Multi-Dimensional Imaging with Synthetic Aperture Radar
Provides a complete description of principles, models and data processing methods, giving an introduction to the theory that underlies recent applications such as topographic mapping and natural risk situational awareness - seismic-tectonics, active volcano, landslides and subsidence monitoring - se...
Autor principal: | |
---|---|
Otros Autores: | , , , |
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
San Diego :
Elsevier Science & Technology
2024.
|
Edición: | 1st ed |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009835412106719 |
Tabla de Contenidos:
- Front Cover
- Multi-Dimensional Imaging with Synthetic Aperture Radar
- Copyright
- Contents
- Authors' biographies
- 1 Introduction
- 1.1 Brief history of radar and SAR development
- 1.2 Radar: detection and ranging
- 1.3 Radar imaging
- 1.4 Radar equation
- 1.4.1 Concentrated target
- 1.4.2 Distributed target
- 1.5 Interferometry
- 1.6 Differential SAR interferometry
- 1.7 Advanced differential SAR interferometry
- 1.8 Tomographic SAR for 3-dimensional and multi-dimensional analysis
- 2 Radar principles: ranging and Doppler
- 2.1 Target ranging with a rectangular pulse
- 2.2 Echoes from multiple targets
- 2.3 Chirp compression
- 2.4 Multiple pulses
- 2.5 Doppler effect
- 2.5.1 Effect of the movement of a target on a single echo
- 2.5.2 Analysis on the band pass signal
- 2.5.3 Analysis on the matched filter output
- 2.6 Radar waveforms
- 2.6.1 Continuous wave
- 2.6.2 Stepped frequency
- 2.7 Stretch processing and sampling
- 2.8 MATLAB® examples
- 2.8.1 Doppler analysis
- 3 Scene characterization
- 3.1 Electromagnetic wave polarization
- 3.2 Scattering matrix, scattering coefficient, and radar cross section
- 3.3 Scattering matrix of canonical objects
- 3.4 Stokes parameters and Mueller matrix
- 3.5 Coherent polarimetric decomposition
- 3.6 Scattering models
- 3.6.1 Surface scattering
- Physical optics
- The small perturbation model
- 3.6.2 Volume scattering
- 3.7 Speckle
- 3.7.1 Speckle statistics
- 4 Imaging radar: SAR data acquisition geometry and modes
- 4.1 Acquisition geometry of imaging radars
- 4.2 Resolution of a real aperture radar (RAR)
- 4.3 SAR resolution and Doppler bandwidth
- 4.3.1 Aperture synthesis approach
- 4.3.2 Doppler approach
- 4.4 SAR acquisition impulse response function
- 4.5 SAR data sampling and ambiguities
- 4.6 Acquisition modes.
- 4.6.1 Broadside and squinted stripmap modes
- 4.6.2 Spotlight
- ScanSAR
- TOPS mode
- 5 2D SAR focusing
- 5.1 Preliminary concepts
- 5.2 Focusing of a single point scatterer
- 5.3 System transfer function evaluation
- 5.4 Focusing of an extended scene
- 5.5 Squinted geometry
- 5.6 MATLAB® examples
- 5.6.1 Raw data simulation
- 5.6.2 Narrow focusing processing
- 6 SAR interferometry
- 6.1 InSAR basic principles for topographic applications
- 6.1.1 SAR stereometry
- 6.1.2 SAR interferometry
- 6.1.3 Canonical topography case
- 6.2 Differential SAR interferometry
- 6.3 Phase statistic
- 6.4 Decorrelation effects
- 6.5 Effect of multilook on SAR interferograms
- 6.6 Coregistration of SAR acquisitions
- 6.7 Phase unwrapping
- 7 Multitemporal SAR interferometry
- 7.1 Signal phase model over multiple interferograms
- 7.1.1 Generalization of the two-antenna interferometry model
- 7.1.2 Multiacquisition SAR interferometry model
- 7.1.3 Interferometric data covariance model
- 7.2 Phase component separation
- 7.2.1 Stacking of coherent interferograms
- 7.2.2 Persistent scatterers interferometry
- 7.3 Multilook in multitemporal SAR interferometry: SqueeSAR and CAESAR methods
- 7.3.1 The SqueeSAR approach
- 7.3.2 The CAESAR approach
- 7.4 Phase unwrapping with multiple acquisitions
- 8 SAR tomography
- 8.1 TomoSAR data model
- 8.1.1 The discrete TomoSAR data model
- 8.1.2 Fourier tomography and Rayleigh elevation resolution
- 8.1.3 Reflectivity models
- 8.2 3D TomoSAR imaging techniques
- 8.2.1 Classical beamforming
- 8.2.2 Truncated singular value decomposition (T-SVD)
- 8.2.3 Capon beamforming
- 8.2.4 MUltiple SIgnal classification (MUSIC)
- 8.2.5 Compressive sensing
- 8.3 Application of SAR tomography to surface scattering scenarios for PS detection.
- 8.3.1 Detection and scatterer parameter estimation of single scatterers at full resolution
- 8.3.2 Detection and scatterer parameter estimation for multiple scatterers at full resolution
- 8.3.3 Multilook detection of weak persistent scatterers
- 8.3.4 Extension to multi-dimensional imaging
- 8.4 TomoSAR applications to volume scattering scenarios
- 8.4.1 Single polarization multibaseline TomoSAR data model for vegetated areas
- 8.4.2 Multipolarization multibaseline TomoSAR data model for vegetated areas
- 8.4.3 Polarimetric unitary rank TomoSAR imaging
- 8.4.4 Polarimetric full rank TomoSAR imaging
- 8.4.5 Polarimetric backscattering separation
- A Appendices
- A.1 Fourier Transform and properties
- A.2 Baseband signal
- A.3 Factorization property
- A.4 Stationary phase approximation
- A.5 Eigenvalue invariance under the Hadamard multiplication by a phase only dyadic product
- A.6 Basic electromagnetic principles
- A.7 Elementary antennas
- A.8 Antenna array
- A.9 Generalized likelihood ratio test detection of persistent scatterers
- List of symbols
- Bibliography
- Index
- Back Cover.