Multi-Dimensional Imaging with Synthetic Aperture Radar

Provides a complete description of principles, models and data processing methods, giving an introduction to the theory that underlies recent applications such as topographic mapping and natural risk situational awareness - seismic-tectonics, active volcano, landslides and subsidence monitoring - se...

Descripción completa

Detalles Bibliográficos
Autor principal: Fornaro, Gianfranco (-)
Otros Autores: Pauciullo, Antonio, Pascazio, Vito, Schirinzi, Gilda, Reale, Diego
Formato: Libro electrónico
Idioma:Inglés
Publicado: San Diego : Elsevier Science & Technology 2024.
Edición:1st ed
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009835412106719
Tabla de Contenidos:
  • Front Cover
  • Multi-Dimensional Imaging with Synthetic Aperture Radar
  • Copyright
  • Contents
  • Authors' biographies
  • 1 Introduction
  • 1.1 Brief history of radar and SAR development
  • 1.2 Radar: detection and ranging
  • 1.3 Radar imaging
  • 1.4 Radar equation
  • 1.4.1 Concentrated target
  • 1.4.2 Distributed target
  • 1.5 Interferometry
  • 1.6 Differential SAR interferometry
  • 1.7 Advanced differential SAR interferometry
  • 1.8 Tomographic SAR for 3-dimensional and multi-dimensional analysis
  • 2 Radar principles: ranging and Doppler
  • 2.1 Target ranging with a rectangular pulse
  • 2.2 Echoes from multiple targets
  • 2.3 Chirp compression
  • 2.4 Multiple pulses
  • 2.5 Doppler effect
  • 2.5.1 Effect of the movement of a target on a single echo
  • 2.5.2 Analysis on the band pass signal
  • 2.5.3 Analysis on the matched filter output
  • 2.6 Radar waveforms
  • 2.6.1 Continuous wave
  • 2.6.2 Stepped frequency
  • 2.7 Stretch processing and sampling
  • 2.8 MATLAB® examples
  • 2.8.1 Doppler analysis
  • 3 Scene characterization
  • 3.1 Electromagnetic wave polarization
  • 3.2 Scattering matrix, scattering coefficient, and radar cross section
  • 3.3 Scattering matrix of canonical objects
  • 3.4 Stokes parameters and Mueller matrix
  • 3.5 Coherent polarimetric decomposition
  • 3.6 Scattering models
  • 3.6.1 Surface scattering
  • Physical optics
  • The small perturbation model
  • 3.6.2 Volume scattering
  • 3.7 Speckle
  • 3.7.1 Speckle statistics
  • 4 Imaging radar: SAR data acquisition geometry and modes
  • 4.1 Acquisition geometry of imaging radars
  • 4.2 Resolution of a real aperture radar (RAR)
  • 4.3 SAR resolution and Doppler bandwidth
  • 4.3.1 Aperture synthesis approach
  • 4.3.2 Doppler approach
  • 4.4 SAR acquisition impulse response function
  • 4.5 SAR data sampling and ambiguities
  • 4.6 Acquisition modes.
  • 4.6.1 Broadside and squinted stripmap modes
  • 4.6.2 Spotlight
  • ScanSAR
  • TOPS mode
  • 5 2D SAR focusing
  • 5.1 Preliminary concepts
  • 5.2 Focusing of a single point scatterer
  • 5.3 System transfer function evaluation
  • 5.4 Focusing of an extended scene
  • 5.5 Squinted geometry
  • 5.6 MATLAB® examples
  • 5.6.1 Raw data simulation
  • 5.6.2 Narrow focusing processing
  • 6 SAR interferometry
  • 6.1 InSAR basic principles for topographic applications
  • 6.1.1 SAR stereometry
  • 6.1.2 SAR interferometry
  • 6.1.3 Canonical topography case
  • 6.2 Differential SAR interferometry
  • 6.3 Phase statistic
  • 6.4 Decorrelation effects
  • 6.5 Effect of multilook on SAR interferograms
  • 6.6 Coregistration of SAR acquisitions
  • 6.7 Phase unwrapping
  • 7 Multitemporal SAR interferometry
  • 7.1 Signal phase model over multiple interferograms
  • 7.1.1 Generalization of the two-antenna interferometry model
  • 7.1.2 Multiacquisition SAR interferometry model
  • 7.1.3 Interferometric data covariance model
  • 7.2 Phase component separation
  • 7.2.1 Stacking of coherent interferograms
  • 7.2.2 Persistent scatterers interferometry
  • 7.3 Multilook in multitemporal SAR interferometry: SqueeSAR and CAESAR methods
  • 7.3.1 The SqueeSAR approach
  • 7.3.2 The CAESAR approach
  • 7.4 Phase unwrapping with multiple acquisitions
  • 8 SAR tomography
  • 8.1 TomoSAR data model
  • 8.1.1 The discrete TomoSAR data model
  • 8.1.2 Fourier tomography and Rayleigh elevation resolution
  • 8.1.3 Reflectivity models
  • 8.2 3D TomoSAR imaging techniques
  • 8.2.1 Classical beamforming
  • 8.2.2 Truncated singular value decomposition (T-SVD)
  • 8.2.3 Capon beamforming
  • 8.2.4 MUltiple SIgnal classification (MUSIC)
  • 8.2.5 Compressive sensing
  • 8.3 Application of SAR tomography to surface scattering scenarios for PS detection.
  • 8.3.1 Detection and scatterer parameter estimation of single scatterers at full resolution
  • 8.3.2 Detection and scatterer parameter estimation for multiple scatterers at full resolution
  • 8.3.3 Multilook detection of weak persistent scatterers
  • 8.3.4 Extension to multi-dimensional imaging
  • 8.4 TomoSAR applications to volume scattering scenarios
  • 8.4.1 Single polarization multibaseline TomoSAR data model for vegetated areas
  • 8.4.2 Multipolarization multibaseline TomoSAR data model for vegetated areas
  • 8.4.3 Polarimetric unitary rank TomoSAR imaging
  • 8.4.4 Polarimetric full rank TomoSAR imaging
  • 8.4.5 Polarimetric backscattering separation
  • A Appendices
  • A.1 Fourier Transform and properties
  • A.2 Baseband signal
  • A.3 Factorization property
  • A.4 Stationary phase approximation
  • A.5 Eigenvalue invariance under the Hadamard multiplication by a phase only dyadic product
  • A.6 Basic electromagnetic principles
  • A.7 Elementary antennas
  • A.8 Antenna array
  • A.9 Generalized likelihood ratio test detection of persistent scatterers
  • List of symbols
  • Bibliography
  • Index
  • Back Cover.