Computational Imaging for Scene Understanding Transient, Spectral, and Polarimetric Analysis
Most cameras are inherently designed to mimic what is seen by the human eye: they have three channels of RGB and can achieve up to around 30 frames per second (FPS). However, some cameras are designed to capture other modalities: some may have the ability to capture spectra from near UV to near IR r...
Autor principal: | |
---|---|
Otros Autores: | |
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated
2024.
|
Edición: | 1st ed |
Colección: | Image. Sensors and image processing
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009828025406719 |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright Page
- Contents
- Introduction
- Part 1. Transient Imaging and Processing
- Chapter 1. Transient Imaging
- 1.1. Introduction
- 1.2. Mathematical formulation
- 1.2.1. Analysis of transient light transport propagation
- 1.2.2. Sparsity of the impulse response function T (x, t)
- 1.3. Capturing light in flight
- 1.3.1. Single-photon avalanche diodes (SPAD)
- 1.4. Applications
- 1.4.1. Range imaging
- 1.4.2. Material estimationand classification
- 1.4.3. Light transport decomposition
- 1.5. Non-line-of-sight imaging
- 1.5.1. Backprojection
- 1.5.2. Confocal NLOS and the light-cone transform
- 1.5.3. Surface-based methods
- 1.5.4. Virtualwaves and phasorfields
- 1.5.5. Discussion
- 1.6. Conclusion
- 1.7. References
- Chapter 2. Transient Convolutional Imaging
- 2.1. Introduction
- 2.2. Time-of-flight imaging
- 2.2.1. Correlationimage sensors
- 2.2.2. Convolutional ToF depth imaging
- 2.2.3. Multi-path interference
- 2.3. Transient convolutional imaging
- 2.3.1. Global convolutional transport
- 2.3.2. Transient imaging using correlation image sensors
- 2.3.3. Spatio-temporal modulation
- 2.4. Transient imagingin scatteringmedia
- 2.5. Present andfuturedirections
- 2.6. References
- Chapter 3. Time-of-Flight and Transient Rendering
- 3.1. Introduction
- 3.2. Mathematical modeling
- 3.2.1. Mathematical modeling for time-of-flight cameras
- 3.3. How to render time-of-flight cameras?
- 3.3.1. Challenges and solutions in time-of-flight rendering
- 3.4. Open-sourceimplementations
- 3.5. Applicationsof transient rendering
- 3.6. Future directions
- 3.7. References
- Part 2. Spectral Imaging and Processing
- Chapter 4. Hyperspectral Imaging
- 4.1. Introduction
- 4.2. 2D (raster scanning) architectures
- 4.2.1. Czerny-Turner grating spectrometers.
- 4.2.2. Transmission grating/prism spectrometers
- 4.2.3. Coded aperture spectrometers
- 4.2.4. Echelle spectrometers
- 4.3. 1D scanning architectures
- 4.3.1. Dispersive spectrometers
- 4.3.2. Interferometric methods
- 4.3.3. Interferometric filter methods
- 4.3.4. Polarization-based filter methods
- 4.3.5. Active illumination methods
- 4.4. Snapshot architectures
- 4.4.1. Bowen-Walravenimage slicer
- 4.4.2. Image slicing and imagemapping
- 4.4.3. Integral field spectrometry with coherent fiber bundles (IFS-F)
- 4.4.4. Integral field spectroscopy with lenslet arrays (IFS-L)
- 4.4.5. Filter array camera (FAC)
- 4.4.6. Computed tomography imaging spectrometry (CTIS)
- 4.4.7. Coded aperture snapshot spectral imager (CASSI)
- 4.5. Comparisonof snapshot techniques
- 4.5.1. The disadvantagesof snapshot
- 4.6. Conclusion
- 4.7. References
- Chapter 5. Spectral Modeling and Separation of Reflective-Fluorescent Scenes
- 5.1. Introduction
- 5.2. RelatedWork
- 5.3. Separation of reflection and fluorescence
- 5.3.1. Reflection and fluorescence models
- 5.3.2. Separation using high-frequency illumination
- 5.3.3. Discussion on the illumination frequency
- 5.3.4. Error analysis
- 5.4. Estimating the absorption spectra
- 5.5. Experiment results and analysis
- 5.5.1. Experimental setup
- 5.5.2. Quantitative evaluation of recovered spectra
- 5.5.3. Visual separation and relighting results
- 5.5.4. Separation by using high-frequency filters
- 5.5.5. Ambient illumination
- 5.6. Limitations and conclusion
- 5.7. References
- Chapter 6. Shape from Water
- 6.1. Introduction
- 6.2. Related works
- 6.3. Light absorption in water
- 6.4. Bispectral light absorption for depth recovery
- 6.4.1. Bispectral depth imaging
- 6.4.2. Depth accuracy and surface reflectance
- 6.5. Practical shape from water.
- 6.5.1. Non-collinear/perpendicular light-camera configuration
- 6.5.2. Perspective camera with a point source
- 6.5.3. Non-ideal narrow-band filters
- 6.6. Co-axial bispectral imaging system and experiment results
- 6.6.1. System configuration and calibration
- 6.6.2. Depth and shape accuracy
- 6.6.3. Complex static and dynamic objects
- 6.7. Trispectral light absorption for depth recovery
- 6.7.1. Trispectral depth imaging
- 6.7.2. Evaluation on the reflectance spectra database
- 6.8. Discussions
- 6.9. Conclusion
- 6.10. References
- Chapter 7. Far Infrared Light Transport Decomposition and Its Application for Thermal Photometric Stereo
- 7.1. Introduction
- 7.1.1. Contributions
- 7.2. Related work
- 7.2.1. Light transport decomposition
- 7.2.2. Computational thermal imaging
- 7.2.3. Photometric stereo
- 7.3. Far infrared light transport
- 7.4. Decomposition and application
- 7.4.1. Far infrared light transport decomposition
- 7.4.2. Separating the ambient component
- 7.4.3. Separating reflection and radiation
- 7.4.4. Separating diffuse and global radiations
- 7.4.5. Other options
- 7.4.6. Thermal photometric stereo
- 7.5. Experiments
- 7.5.1. Decomposition result
- 7.5.2. Surface normal estimation
- 7.6. Conclusion
- 7.7. References
- Chapter 8. Synthetic Wavelength Imaging: Utilizing Spectral Correlations for High-Precision Time-of-Flight Sensing
- 8.1. Introduction
- 8.2. Synthetic wavelength imaging
- 8.3. Synthetic wavelength interferometry
- 8.4. Synthetic wavelength holography
- 8.4.1. Imaging around corners with synthetic wavelength holography
- 8.4.2. Imaging through scattering media with synthetic wavelength holography
- 8.4.3. Discussion and comparison with the state of the art
- 8.5. Fundamental performance limits of synthetic wavelength imaging
- 8.6. Conclusion and future directions.
- 8.7. Acknowledgment
- 8.8. References
- Part 3. Polarimetric Imaging and Processing
- Chapter 9. Polarization-Based Shape Estimation
- 9.1. Fundamental theory of polarization
- 9.2. Reflection component separation
- 9.3. Phase angle of polarization
- 9.4. Surface normal estimation from the phase angle
- 9.5. Degree of polarization
- 9.6. Surface normal estimation from the degree of polarization
- 9.7. Stokes vector
- 9.8. Surface normal estimation from the Stokes vector
- 9.9. References
- Chapter 10. Shape from Polarization and Shading
- 10.1. Introduction
- 10.2. Related works
- 10.2.1. Shading and polarization fusion
- 10.2.2. Shape estimation under uncalibrated light sources
- 10.3. Problem setting and assumptions
- 10.4. Shading stereoscopic constraint
- 10.5. Polarization stereoscopic constraint
- 10.6. Normal estimation with two constraints
- 10.6.1. Algorithm 1: Recovering individual surface points
- 10.6.2. Algorithm 2: Recovering shape and light directions
- 10.7. Experiments
- 10.7.1. Simulation experiments with weights for two constraints
- 10.7.2. Real-world experiments
- 10.8. Conclusion and future works
- 10.9. References
- Chapter 11. Polarization Imaging in the Wild Beyond the Unpolarized World Assumption
- 11.1. Introduction
- 11.2. Mueller calculus
- 11.3. Polarizing filters
- 11.3.1. Linear polarizers
- 11.3.2. Reflectors
- 11.4. Polarization imaging
- 11.5. Image formation model
- 11.5.1. Partially linearly polarized incident illumination
- 11.5.2. Unpolarized incident illumination
- 11.5.3. Discussion
- 11.6. Polarization imaging reflectometry in the wild
- 11.7. Digital Single-Lens Reflex (DSLR) setup
- 11.7.1. Data acquisition
- 11.7.2. Calibration
- 11.7.3. Polarization processing pipeline
- 11.8. Reflectance recovery
- 11.8.1. Surface normal estimation.
- 11.8.2. Diffuse albedo estimation
- 11.8.3. Specular component estimation
- 11.9. Results and analysis
- 11.9.1. Results
- 11.9.2. Discussion and error analysis
- 11.10. References
- Chapter 12. Multispectral Polarization Filter Array
- 12.1. Introduction
- 12.2. Multispectral polarization filter array with a photonic crystal
- 12.3. Generalization of imaging and demosaicking with multispectral
- 12.4. Demonstration
- 12.5. Conclusion
- 12.6. References
- List of Authors
- Index
- EULA.