Data Science for Web3 A Comprehensive Guide to Decoding Blockchain Data with Data Analysis Basics and Machine Learning Cases

Be part of the future of Web3, decoding blockchain data to build trust in the next-generation internet Key Features Build a deep understanding of the fundamentals of blockchain analytics Extract actionable business insights by modeling blockchain data Showcase your work and gain valuable experience...

Descripción completa

Detalles Bibliográficos
Otros Autores: Areco, Gabriela Castillo, author (author), Dahlquist, José, writer of foreword (writer of foreword)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, Limited 2023.
Birmingham, England : [2023]
Edición:First edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009827937706719
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright and Credits
  • Foreword
  • Contributors
  • Table of Contents
  • Preface
  • Part 1 Web3 Data Analysis Basics
  • Chapter 1: Where Data and Web3 Meet
  • Technical requirements
  • Exploring the data ingredients
  • Understanding the blockchain ingredients
  • Three generations of blockchain
  • Introducing the blockchain ingredients
  • Making the first transaction
  • Approaching Web3 industry metrics
  • Block height
  • Time
  • Tokenomics
  • Total Value Locked (TVL)
  • Total market cap
  • Data quality challenges
  • Data standards challenges
  • Retail
  • Confirmations
  • NFT Floor Price
  • The concept of "lost"
  • A brief overview of APIs
  • Summary
  • Further reading
  • Chapter 2: Working with On-Chain Data
  • Technical requirements
  • Dissecting a transaction
  • Nonce
  • Gas price
  • Gas limit
  • Recipient
  • Sender
  • Value
  • Input data
  • V,R,S
  • Transaction receipt
  • Status
  • Gas used and Cumulative gas used
  • Logs
  • Dissecting a block
  • Exploring state data
  • Reviewing data sources
  • Block explorers
  • Infura
  • Moralis
  • GetBlock
  • Dune
  • Covalent
  • Flipside
  • The Graph
  • Google BigQuery
  • Summary
  • Further reading
  • Chapter 3: Working with Off-Chain Data
  • Technical requirements
  • Introductory example - listing data sources
  • Adding prices to our dataset
  • CoinGecko
  • CoinMarketCap
  • Binance
  • Oracles - Chainlink
  • OHLC - Kraken
  • Final thoughts on prices
  • Adding news to our dataset
  • Adding social networks to our dataset
  • X (formerly Twitter)
  • Summary
  • Further reading
  • Chapter 4: Exploring the Digital Uniqueness of NFTs - Games, Art, and Identity
  • Technical requirements
  • Enabling unique asset tracking on the blockchain using NFT
  • The business requests
  • The technical solution
  • Blockchain gaming - the GameFi proposal
  • Introduction to the business landscape.
  • Analytics
  • Identity in the blockchain
  • Introduction to the business landscape
  • Analytics
  • Redefining the art business with blockchain
  • Introduction to the business landscape
  • Data extraction
  • Floor price and wash trading
  • A word on anti-money laundering (AML) practices
  • Summary
  • Further reading
  • Chapter 5: Exploring Analytics on DeFi
  • Technical requirements
  • Stablecoins and other tokens
  • Understanding tokens, native assets, and the ERC-20 data structure
  • Hands-on example
  • Understanding DEX
  • Hands-on example - pools and AMM
  • DEX aggregators
  • Lending and borrowing services on Web3
  • Flash loans
  • A note on protocol bad debt
  • Multichain protocols and cross-chain bridges
  • Hands-on example - Hop bridge
  • Summary
  • Further reading
  • Part 2 Web3 Machine Learning Cases
  • Chapter 6: Preparing and Exploring Our Data
  • Technical requirements
  • Data preparation
  • Hex values
  • Checksum
  • Decimal treatment
  • From Unix timestamps to datetime formats
  • Evolution of smart contracts
  • Exploratory Data Analysis
  • Summarizing data
  • Outlier detection
  • Summary
  • Further reading
  • Chapter 7: A Primer on Machine Learning and Deep Learning
  • Technical requirements
  • Introducing machine learning
  • Building a machine learning pipeline
  • Model
  • Training
  • Underfitting and overfitting
  • Prediction and evaluation
  • Introducing deep learning
  • Model preparation
  • Model building
  • Training and evaluating a model
  • Summary
  • Further reading
  • Chapter 8: Sentiment Analysis - NLP and Crypto News
  • Technical requirements
  • Example datasets
  • Building our pipeline
  • Preparation
  • Model building
  • Training and evaluation
  • ChatGPT integration
  • Summary
  • Further reading
  • Chapter 9: Generative Art for NFTs
  • Technical requirements
  • Creating with colors - colorizing
  • Hands-on Style2Paints.
  • Theory
  • A note on training datasets
  • Creating with style - style transfer
  • Preparation
  • Model building
  • Training and inference
  • Creating with prompts - text to image
  • DALL.E 2
  • Stable Diffusion
  • Midjourney
  • Leonardo.Ai
  • Minting an NFT collection
  • Summary
  • Further reading
  • Chapter 10: A Primer on Security and Fraud Detection
  • Technical requirements
  • A primer on illicit activity on Ethereum
  • Preprocessing
  • Training the model
  • Evaluating the results
  • Presenting results
  • Summary
  • Further reading
  • Chapter 11: Price Prediction with Time Series
  • Technical requirements
  • A primer on time series
  • Exploring the dataset
  • Discussing traditional pipelines
  • Preprocessing
  • Modeling - ARIMA/SARIMAX and Auto ARIMA
  • Auto ARIMA
  • Adding exogenous variables
  • Using a neural network - LSTM
  • Preprocessing
  • Model building
  • Training and evaluation
  • Summary
  • Further reading
  • Chapter 12: Marketing Discovery with Graphs
  • Technical requirements
  • A primer on graphs
  • Types of graphs
  • Graph properties
  • The dataset
  • Node classification
  • Preparation
  • Modeling
  • Training and evaluation
  • Summary
  • Further reading
  • Part 3 Appendix
  • Chapter 13: Building Experience with Crypto Data - BUIDL
  • Showcasing your work - portfolio
  • Looking for a job
  • Preparing for a job interview
  • Importance of soft skills
  • Where to study
  • Summary
  • Further reading
  • Chapter 14: Interviews with Web3 Data Leaders
  • Hildebert Moulié (aka hildobby)
  • Jackie Zhang
  • Marina Ghosh
  • Professor One Digit
  • Appendix 1
  • Appendix 2
  • Appendix 3
  • Index
  • Other Books You May Enjoy.