Deep Learning for Multimedia Processing Applications Volume One, Image Security and Intelligent Systems for Multimedia Processing Volume One, Image Security and Intelligent Systems for Multimedia Processing /

Detalles Bibliográficos
Otros Autores: Bhatti, Uzair Aslam, 1986- editor (editor)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Boca Raton, FL : CRC Press [2024]
Edición:First edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009826135606719
Tabla de Contenidos:
  • Intro
  • Cover
  • Half Title
  • Title Page
  • Copyright Page
  • Contents
  • Contributors
  • Chapter 1 A Novel Robust Watermarking Algorithm for Encrypted Medical Images Based on Non-Subsampled Shearlet Transform and Schur Decomposition
  • 1.1 Introduction
  • 1.2 Basic Theory
  • 1.2.1 Discrete Wavelet Transform (DWT)
  • 1.2.2 Non-Subsampled Shearlet Transform (NSST)
  • 1.2.3 Matrix Schur Decomposition
  • 1.2.4 Chaos Encryption System
  • 1.3 Proposed Algorithm
  • 1.3.1 Medical Image Encryption
  • 1.3.2 Feature Extraction
  • 1.3.3 Embed Watermark
  • 1.3.4 Extraction of Watermark
  • 1.4 Experiments and Analysis of Results
  • 1.4.1 Simulation Experiment
  • 1.4.2 Attacks Results
  • 1.4.3 Contrastion to Plaintext Domain Algorithm
  • 1.4.4 Contrastion to Other Encrypted Algorithms
  • 1.5 Conclusion
  • References
  • Chapter 2 Robust Zero Watermarking Algorithm for Encrypted Medical Images Based on SUSAN-DCT
  • 2.1 Introduction
  • 2.2 Literature Review
  • 2.3 Basic Theory and Proposed Algorithm
  • 2.3.1 SUSAN Edge Detection
  • 2.3.2 Hu Moments
  • 2.3.3 Logical Mapping
  • 2.3.4 Proposed Algorithm
  • 2.4 Experiment and Results
  • 2.4.1 Evaluation Parameter
  • 2.4.2 Experimental Setup
  • 2.4.3 Results and Analysis
  • 2.5 Conclusion
  • References
  • Chapter 3 Robust Zero Watermarking Algorithm for Encrypted Medical Volume Data Based on PJFM and 3D-DCT
  • 3.1 Introduction
  • 3.2 The Fundamental Theory
  • 3.2.1 Pseudo Jacobi-Fourier Moment
  • 3.2.2 D-DCT and 3D-IDCT
  • 3.2.3 Logistic Mapping
  • 3.3 The Proposed Method
  • 3.3.1 Medical Volume Data Encryption
  • 3.3.2 Feature Extraction
  • 3.3.3 Watermark Encryption and Embedding
  • 3.3.4 Watermark Extraction and Decryption
  • 3.4 Experimental Results and Performance Evaluation
  • 3.4.1 Simulation Experiment
  • 3.4.2 Attacks Results
  • 3.4.3 Comparison with Unencrypted Algorithm
  • 3.5 Conclusion
  • References.
  • Chapter 4 Robust Zero Watermarking Algorithm for Medical Images Based on BRISK and DCT
  • 4.1 Introduction
  • 4.2 Fundamental Theory
  • 4.2.1 BRISK Feature Extraction Algorithm
  • 4.2.2 Discrete Cosine Transform (DCT)
  • 4.2.3 Logistic Mapping
  • 4.3 Proposed Algorithm
  • 4.3.1 Medical Image Feature Extraction
  • 4.3.2 Watermark Encryption
  • 4.3.3 Embed Watermark
  • 4.3.4 Watermark Extraction and Decryption
  • 4.4 Experiments and Results
  • 4.4.1 Test Different Images
  • 4.4.2 Conventional Attacks
  • 4.4.3 Geometric Attacks
  • 4.4.4 Compare with Other Algorithms
  • 4.5 Conclusion
  • References
  • Chapter 5 Robust Color Images Zero-Watermarking Algorithm Based on Stationary Wavelet Transform and Daisy Descriptor
  • 5.1 Introduction
  • 5.2 Literature Review
  • 5.3 Material and Techniques
  • 5.3.1 Daisy Descriptor
  • 5.3.2 Stationary Wavelet Transform
  • 5.3.3 Tent Chaotic Map
  • 5.3.4 Proposed Algorithm
  • 5.4 Experiment and Results
  • 5.4.1 Evaluation Parameter
  • 5.4.2 Feasibility Analysis
  • 5.4.3 Results and Analysis
  • 5.5 Conclusion
  • References
  • Chapter 6 Robust Multi-watermarking Algorithm Based on DarkNet53
  • 6.1 Introduction
  • 6.2 Basic Theory
  • 6.2.1 DarkNet53
  • 6.2.2 Discrete Cosine Transform
  • 6.2.3 Logistic Map
  • 6.3 Proposed Algorithm
  • 6.3.1 Improvement of DarkNet53 Network Model
  • 6.3.2 Encryption of Watermark
  • 6.3.3 Watermark Embedding
  • 6.3.4 Extraction of a Watermark
  • 6.3.5 Decryption of a Watermark
  • 6.4 Experimental Results and Analysis
  • 6.4.1 Performance
  • 6.4.2 Reliability Analysis
  • 6.4.3 Traditional Attack
  • 6.4.4 Geometric Attack
  • 6.5 Conclusion
  • References
  • Chapter 7 Robust Multi-watermark Algorithm for Medical Images Based on SqueezeNet Transfer Learning
  • 7.1 Introduction
  • 7.2 Fundamental Theory
  • 7.2.1 SqueezeNet Neural Network
  • 7.2.2 Transfer Learning.
  • 7.2.3 SPM Composite Chaotic Mapping
  • 7.3 Proposed Algorithm
  • 7.3.1 Retraining the Network
  • 7.3.2 Watermark Encryption
  • 7.3.3 Generation and Extraction of Zero Watermark
  • 7.3.4 Decryption of Watermark
  • 7.4 Experimental Results
  • 7.4.1 Evaluation Metrics
  • 7.4.2 Discrimination Testing
  • 7.4.3 Robustness Testing
  • 7.4.4 Comparison
  • 7.5 Conclusion
  • References
  • Chapter 8 Deep Learning Applications in Digital Image Security: Latest Methods and Techniques
  • 8.1 Introduction
  • 8.2 Background
  • 8.2.1 Basic Model
  • 8.2.2 Learning-based Model
  • 8.3 Classification of Digital Watermarking
  • 8.3.1 Divided by Characteristics
  • 8.3.2 Divided by Detection Method
  • 8.3.3 Divided by Hidden Domain
  • 8.3.4 Other Classifications
  • 8.4 Performance Evaluation and Algorithms
  • 8.4.1 Performance Evaluation
  • 8.4.2 Algorithms
  • 8.5 Attacks
  • 8.5.1 Robust Attack
  • 8.5.2 No Attack
  • 8.5.3 Explaining the Attack
  • 8.6 Learning-based Watermarking
  • 8.7 Applications of Learning-based Watermarking
  • 8.7.1 Medical Field
  • 8.7.2 Remote-sensing Field
  • 8.7.3 Map Copyright
  • 8.7.4 Copyright Protection
  • 8.7.5 Content Authentication
  • 8.7.6 Infringement Tracking
  • 8.7.7 Radio Monitoring
  • 8.7.8 Copy Control
  • 8.7.9 Electronic Field
  • 8.8Conclusion
  • Funding
  • References
  • Chapter 9 Image Fusion Techniques and Applications for Remote Sensing and Medical Images
  • 9.1 Introduction
  • 9.2 Rule of Image Fusion
  • 9.3 Levels of Image Fusion
  • 9.3.1 Pixel-Level Image Fusion
  • 9.3.2 Feature-Level Image Fusion
  • 9.3.3 Decision-Level Image Fusion
  • 9.4 Image Fusion Methods
  • 9.4.1 Spatial Domain Fusion Methods
  • 9.4.2 Frequency Domain Fusion Methods
  • 9.4.3 Deep Learning Methods
  • 9.5 Techniques for the Assessment of Image Fusion Quality
  • 9.6 Image Fusion Categorization
  • 9.6.1 Single Sensor
  • 9.6.2 Multi-Sensors.
  • 9.6.3 Multiview Fusion
  • 9.6.4 Multimodal Fusion
  • 9.6.5 Multi-Focus Fusion
  • 9.6.6 Multi-Temporal Fusion
  • 9.7 Image Fusion Applications
  • 9.7.1 Medical Image Fusion
  • 9.7.2 Remote-Sensing Image Fusion
  • 9.7.3 Visible-Infrared Fusion
  • 9.7.4 Multi-Focus Image Fusion
  • 9.8 Conclusion
  • References
  • Chapter 10Detecting Phishing URLs through Deep Learning Models
  • 10.1 Introduction
  • 10.2 DL Models Used in Cybersecurity
  • 10.2.1 Convolutional Neural Network
  • 10.2.2 Recurrent Neural Networks
  • 10.2.3 Long Short-Term Memory
  • 10.2.4 Deep Belief Networks
  • 10.2.5 Multi-Layer Perceptron
  • 10.2.6 Generative Adversarial Network
  • 10.3 Metrics
  • 10.3.1 Accuracy
  • 10.3.2 Precision
  • 10.3.3 Recall (Sensitivity)
  • 10.3.4 F1 Score
  • 10.3.5 Confusion Matrix
  • 10.4 Application of Deep Learning in Cybersecurity Use Cases
  • 10.4.1 Intrusion Detection System
  • 10.4.2 Malware Detection
  • 10.4.3 Botnet Detection
  • 10.4.4 Network Traffic Identification
  • 10.4.5 Credit Card Fraud Detection
  • 10.5 Existing Work Related to Phishing URL Detection Using DL Models
  • 10.6 Conclusion
  • References
  • Chapter 11 Augmenting Multimedia Analysis: A Fusion of Deep Learning with Differential Privacy
  • 11.1 Introduction
  • 11.2 Multimedia Data and Crowdsensing Privacy Concerns
  • 11.3 Deep Learning and Privacy Risks
  • 11.3.1 Privacy Attacks in Deep Learning Pipeline
  • 11.4 Algorithms for Preserving Privacy
  • 11.5 The Differential Privacy Distributions
  • 11.6 How Differential Privacy Fuses With Deep Learning
  • 11.7 Methodology: Exploring the Intersection of Multimedia Data With Deep Learning and Privacy in Literature
  • 11.7.1 Preserving-Privacy Image Analysis
  • 11.7.2 Preserving-Privacy Video Analysis
  • 11.7.3 Preserving-Privacy With Other Methods
  • 11.8 Discussion
  • 11.9 Conclusion
  • References.
  • Chapter 12 Multi-classification Deep Learning Models for Detecting Multiple Chest Infection Using Cough and Breath Sounds
  • 12.1 Introduction
  • 12.2 Literature Review
  • 12.3 Materials and Methods
  • 12.3.1 Proposed Study Flow for the Diagnosis of Multiple Chest Infections
  • 12.3.2 Data Set Description
  • 12.3.3 Using SMOTE Tomek to Balance the Data Set
  • 12.3.4 Deep Learning Classifiers
  • 12.3.5 Proposed Model
  • 12.3.6 Dense Block of Proposed Model
  • 12.3.7 Model Evaluations
  • 12.4 Results and Discussion
  • 12.4.1 Experimental Setup
  • 12.4.2 Accuracy Comparison of Proposed Model with Baseline Models
  • 12.4.3 AUC Comparison with Baseline Models
  • 12.4.4 Comparison with Baseline Models Using Precision
  • 12.4.5 Comparison of DMCIC_Net with Baseline Models Using Recall
  • 12.4.6 F1-Score Comparison with Baseline Models
  • 12.4.7 Comparison of Proposed Model with Baseline Models Using Loss
  • 12.4.8 Comparison of ROC with Current Models
  • 12.4.9 AU(ROC) Extension for Multiclass Comparison Against Recent Models
  • 12.4.10 Comparison of DMCIC_Net with Six Models Using a Confusion Matrix
  • 12.4.11 Comparison of the Proposed Model with State of the Art
  • 12.4.12 Discussion
  • 12.5 Conclusion
  • References
  • Chapter 13 Classifying Traffic Signs Using Convolutional Neural Networks Based on Deep Learning Models
  • 13.1 Introduction
  • 13.2 How Does a Model Learn?
  • 13.2.1 Types of Machine Learning
  • 13.2.2 Tasks Performed by Machine Learning
  • 13.2.3 Depth of Machine Learning
  • 13.3 Deep Learning
  • 13.3.1 Training of Deep Learning Models
  • 13.3.2 Algorithms Used to Train Deep Learning Models
  • 13.4 Classification of Images Using a Convolutional Neural Network
  • 13.4.1 Classifying Images Using Traditional Methods
  • 13.4.2 Image Classification Using CNN
  • 13.4.3 Overview of CNN Models Used for Image Classification.
  • 13.5 Classifying Traffic Signs Using Convolutional Neural Network.