Deep Learning for Multimedia Processing Applications Volume Two, Signal Processing and Pattern Recognition Volume Two, Signal Processing and Pattern Recognition /

Detalles Bibliográficos
Otros Autores: Bhatti, Uzair Aslam, 1986- editor (editor)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Boca Raton, FL : CRC Press [2024]
Edición:First edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009826132606719
Tabla de Contenidos:
  • Intro
  • Cover
  • Half Title
  • Title Page
  • Copyright Page
  • Contents
  • Contributors
  • Chapter 1 A Review on Comparative Study of Image-Denoising in Medical Imaging
  • 1.1 Introduction
  • 1.1.1 Evaluation of Image-Denoising Techniques
  • 1.1.2 Image-Denoising Techniques
  • 1.1.3 Applications
  • 1.1.4 Comparison
  • 1.2 Conclusion
  • References
  • Chapter 2 Remote-Sensing Image Classification: A Comprehensive Review and Applications
  • 2.1 Introduction
  • 2.1.1 Need for This Survey
  • 2.1.2 Need for Remote-Sensing Image Classification
  • 2.1.3 Significance of Remote-Sensing Image Classification
  • 2.1.4 Research Gap for Deep Learning-Based Remote-Sensing Image Classification
  • 2.2 Deep Learning Architectures for Remote-Sensing Image Classification
  • 2.2.1 Convolutional Neural Networks (CNNs)
  • 2.2.2 Fully Convolutional Networks (FCNs)
  • 2.2.3 U-Net
  • 2.2.4 SegNet
  • 2.2.5 DeepLab
  • 2.2.6 Gated Recurrent Units (GRUs) and Long Short-Term Memory (LSTM) Networks
  • 2.2.7 Autoencoders
  • 2.2.8 Generative Adversarial Networks (GANs)
  • 2.2.9 Capsule Networks (CapsNets)
  • 2.2.10 Attention-Based Mechanisms
  • 2.2.11 Graph Convolutional Networks (GCNs)
  • 2.2.12 Siamese Networks
  • 2.2.13 3D Convolutional Neural Networks (3D-CNNs)
  • 2.3 Differences in Deep Learning Architectures for Remote-Sensing Image Classification
  • 2.3.1 Architecture
  • 2.3.2 Input Data
  • 2.3.3 Training Strategy
  • 2.3.4 Transfer Learning
  • 2.3.5 Optimization
  • 2.3.6 Interpretability
  • 2.4 Remote-Sensing Data Sources and Characteristics
  • 2.4.1 Satellites
  • 2.4.2 UAVs
  • 2.4.3 Multispectral Sensors
  • 2.4.4 Hyperspectral Sensors
  • 2.4.5 Synthetic Aperture Radar (SAR)
  • 2.4.6 Spatial Resolution
  • 2.4.7 Spectral Resolution
  • 2.4.8 Temporal Resolution
  • 2.4.9 Radiometric Resolution
  • 2.5 Application of Deep Learning in Remote Sensing.
  • 2.5.1 Land Cover Classification
  • 2.5.2 Vegetation Monitoring
  • 2.5.3 Urban Land-Use Classification
  • 2.5.4 HSI Remote Sensing
  • 2.6 Challenges for Deep Learning Methods for RS Image Processing
  • 2.6.1 High Spatial and Spectral Variability
  • 2.6.2 Limited Annotated Data
  • 2.6.3 Class Imbalance
  • 2.6.4 Intra-Class Variability
  • 2.6.5 Spectral Mixing and Shadow Effects
  • 2.6.6 Sensor Noise and Atmospheric Interference
  • 2.6.7 Computational Complexity
  • 2.6.8 Adaptability and Generalization
  • 2.7 Limitations
  • 2.7.1 Dependence on Image Quality
  • 2.7.2 Temporal Variability
  • 2.7.3 Generalization and Transferability
  • 2.7.4 Scalability
  • 2.7.5 Interpretability
  • 2.7.6 Labeling Challenges
  • 2.7.7 Privacy Concerns
  • 2.7.8 Legal and Policy Constraints
  • 2.8 Conclusion
  • 2.8.1 Future Work
  • Funding
  • References
  • Chapter 3 Deep Learning Framework for Face Detection and Recognition for Dark Faces Using VGG19 with Variant of Histogram Equalization
  • 3.1 Introduction
  • 3.2 Literature Review
  • 3.3 Material and Techniques
  • 3.3.1 Convolutional Neural Network
  • 3.3.2 Histogram Equalization
  • 3.3.3 Data Set
  • 3.3.4 Proposed Framework
  • 3.4 Experiment and Results
  • 3.4.1 Evaluation Parameter
  • 3.4.2 Experimental Setup
  • 3.4.3 Results and Analysis
  • 3.5 Conclusion
  • References
  • Chapter 4 A 3D Method for Combining Geometric Verification and Volume Reconstruction in a Photo Tourism System
  • 4.1 Introduction
  • 4.2 Literature Review
  • 4.3 Method
  • 4.3.1 Processing
  • 4.3.2 Feature Extraction
  • 4.3.3 Feature Matching
  • 4.3.4 Geometric Verification
  • 4.3.5 Volumetric Reconstruction
  • 4.3.6 Triangulation
  • 4.3.7 Bundle Adjustment
  • 4.4 Experiments
  • 4.4.1 Data Set Description
  • 4.5 Results and Analysis
  • 4.6 Conclusion
  • Acknowledgments
  • References.
  • Chapter 5 Deep Learning Algorithms and Architectures for Multimodal Data Analysis
  • 5.1 Introduction to Multimodal Data Analysis
  • 5.2 Overview of Deep Learning Algorithms and Architectures
  • 5.2.1 Pre-Processing of the Multimodal Data
  • 5.2.2 The Training Process of Deep Learning Models on Multimodal Data
  • 5.2.3 Deep Learning Methods and Blockchain Technology Consortium
  • 5.3 Conclusion and Future Directions
  • Abbreviations
  • References
  • Chapter 6 Deep Learning Algorithms: Clustering and Classifications for Multimedia Data
  • 6.1 Introduction
  • 6.1.1 Deep Learning and Its Applications in Multimedia Data Analysis
  • 6.1.2 Classification Algorithms in Deep Learning Can Be Broadly Classified into the Following Categories
  • 6.1.3 Deep Learning for Clustering Multimedia Data
  • 6.1.4 Types of Clustering
  • 6.1.5 Classification of Clustering Algorithms in Deep Learning
  • 6.1.6 List of More Comprehensive Deep Learning Clustering Algorithms
  • 6.2 Deep Clustering Algorithm Challenges and the Multimedia Data
  • 6.2.1 Convolutional Autoencoders for Clustering Images
  • 6.2.2 Deep Convolutional Embedded Clustering for Clustering Images
  • 6.2.3 Multimodal Deep Embedded Clustering for Clustering Multimodal Data
  • 6.2.4 Case Studies - The Effectiveness of Deep Learning for Clustering Multimodal Data
  • 6.3 Deep Learning for Classification of Multimedia Data
  • 6.3.1 Incorporating Multimodal Data for Improving Classification Performance
  • 6.4 Blockchain Technology and Deep Learning Algorithms in the Context of Multimodal Data
  • 6.4.1 Cross-Border Blockchain Technology and Deep Learning Methods
  • 6.4.2 Key Attributes of Cross-Border Blockchain Technology
  • 6.4.3 Cross-Border and Deep Learning Multimodal Blockchain Technology
  • 6.4.4 Future Trends and Applications of the Blockchain and Deep Learning
  • 6.5 Conclusion
  • Abbreviations.
  • References
  • Chapter 7 A Non-Reference Low-Light Image Enhancement Approach Using Deep Convolutional Neural Networks
  • 7.1 Introduction
  • 7.2 Literature Review
  • 7.3 Material and Techniques
  • 7.3.1 Retinex Theory
  • 7.3.2 Decomposition Network
  • 7.3.3 Optimizing the Network
  • 7.4 Experiment and Results
  • 7.4.1 Experimental Design
  • 7.4.2 Subjective Evaluation
  • 7.4.3 Objective Evaluation
  • 7.4.4 Generalization Ability
  • 7.5 Conclusion
  • References
  • Chapter 8 Human Pose Analysis and Gesture Recognition: Methods and Applications
  • 8.1 Introduction
  • 8.2 Literature Review
  • 8.2.1 Bodily Attached Sensors Based Methods
  • 8.2.2 Computer Vision-Based Recognition Systems
  • 8.2.3 Pose and Gesture Recognition Using Multiple Sensors
  • 8.2.4 Data Fusion in a Multisensory Environment
  • 8.2.5 Pose and Gesture Data Set
  • 8.3 Conclusion
  • References
  • Chapter 9 Human Action Recognition Using ConvLSTM with Adversarial Noise and Compressive-Sensing-Based Dimensionality Reduction, Concise and Informative
  • 9.1 Introduction
  • 9.2 Background
  • 9.3 Proposed Model
  • 9.3.1 Data Layer
  • 9.3.2 Compressive Sensing
  • 9.3.3 Feature Learning
  • 9.3.4 Sequential Learning
  • 9.3.5 Softmax
  • 9.3.6 Output Layer
  • 9.4 Results and Discussion
  • 9.4.1 SVM Classifier
  • 9.4.2 ConvLSTM Classifier
  • 9.4.3 ConvLSTM with GANs
  • 9.4.4 Overall Results
  • 9.5 Conclusions
  • Supplementary Materials
  • Acknowledgments
  • References
  • Chapter 10 Application of Machine Learning to Urban Ecology
  • 10.1 Introduction
  • 10.1.1 Brief Background of Urban Ecology
  • 10.1.2 The Importance of Machine Learning in Urban Ecology
  • 10.1.3 Objectives of the Chapter
  • 10.2 Introduction to Machine Learning
  • 10.2.1 Types of Machine Learning Techniques
  • 10.2.2 How Machine Learning Can Benefit Urban Ecology
  • 10.3 Overview of Urban Ecological Data Sources.
  • 10.3.1 Preprocessing and Data Fusion Techniques
  • 10.4 Applications of Machine Learning in Urban Ecosystem Services
  • 10.4.1 Urban Green Space Identification and Monitoring
  • 10.4.2 Biodiversity Assessment and Conservation
  • 10.4.3 Urban Heat Island Detection and Mitigation
  • 10.4.4 Air Quality Monitoring and Prediction
  • 10.4.5 Flood Risk Assessment and Management
  • 10.5 Applications of Machine Learning in Urban Landscape Planning and Design
  • 10.5.1 Landscape Connectivity and Fragmentation Analysis
  • 10.5.2 Green Infrastructure Planning
  • 10.5.3 Urban Greening and Rewilding Strategies
  • 10.5.4 Urban Form Optimization for Ecological Resilience
  • 10.5.5 Evaluation of Landscape Design Alternatives
  • 10.6 Machine Learning for Socio-Ecological Systems in Urban Environments
  • 10.6.1 Analyzing Human-Nature Interactions
  • 10.6.2 Environmental Justice and Equitable Access to Green Spaces
  • 10.6.3 Public Engagement and Decision-Making Support
  • 10.6.4 Community-Based Ecological Monitoring and Management
  • 10.7 Challenges and Future Directions
  • 10.7.1 Data Quality and Availability
  • 10.7.2 Interpreting and Validating Machine Learning Models
  • 10.7.3 Integrating Cross-Disciplinary Knowledge
  • 10.7.4 Ethical Considerations
  • 10.7.5 Climate Change and Urban Ecology
  • 10.8 Conclusion
  • References
  • Chapter 11 Application of Machine Learning in Urban Land Use
  • 11.1 Introduction
  • 11.1.1 Briefly Introduce the Concept of Machine Learning and Urban Land Use
  • 11.1.2 Explain the Significance of Integrating Machine Learning in Urban Planning and Management
  • 11.2 Background: Understanding Urban Land Use and Machine Learning
  • 11.2.1 Discuss the Basics of Urban Land Use, Including its Importance, Challenges, and Traditional Methods Used in Planning.
  • 11.2.2 Introduce Machine Learning and Its Key Concepts, Including Algorithms, Training, and Validation.