Mixture Models Parametric, Semiparametric, and New Directions
"Mixture models are a powerful tool for analyzing complex and heterogeneous datasets across many scientific fields, from finance to genomics. Mixture Models: Parametric, Semiparametric, and New Directions provides an up-to-date introduction to these models, their recent developments, and their...
Other Authors: | , |
---|---|
Format: | eBook |
Language: | Inglés |
Published: |
Boca Raton :
CRC Press
[2024]
|
Edition: | First edition |
Series: | Monographs on statistics and applied probability (Series) ;
175. |
Subjects: | |
See on Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009825853506719 |
Table of Contents:
- Cover
- Half Title
- Series Page
- Title Page
- Copyright Page
- Dedication
- Contents
- Preface
- Symbols
- Authors
- 1. Introduction to mixture models
- 1.1. Introduction
- 1.2. Formulations of mixture models
- 1.3. Identifiability
- 1.4. Maximum likelihood estimation
- 1.5. EMalgorithm
- 1.5.1. Introduction of EM algorithm
- 1.5.2. EM algorithm for mixture models
- 1.5.3. Rate of convergence of the EM algorithm
- 1.5.4. Classification EM algorithms
- 1.5.5. Stochastic EM algorithms
- 1.5.6. ECM algorithm and some other extensions
- 1.5.7. Initial values
- 1.5.8. Stopping rules
- 1.6. Some applications of EM algorithm
- 1.6.1. Mode estimation
- 1.6.2. Maximize a mixture type objective function
- 1.7. Multivariate normal mixtures
- 1.7.1. Introduction
- 1.7.2. Parsimonious multivariate normal mixture modeling
- 1.8. The topography of finite normal mixture models
- 1.8.1. Shapes of some univariate normal mixtures
- 1.8.2. The topography of multivariate normal mixtures
- 1.9. Unboundedness of normal mixture likelihood
- 1.9.1. Restricted MLE
- 1.9.2. Penalized likelihood estimator
- 1.9.3. Profile likelihood method
- 1.10. Consistent root selections for mixture models
- 1.11. Mixture of skewed distributions
- 1.11.1. Multivariate skew-symmetric distributions
- 1.11.2. Finite mixtures of skew distributions
- 1.12. Semi-supervised mixture models
- 1.13. Nonparametric maximum likelihood estimate
- 1.13.1. Introduction
- 1.13.2. Computations of NPMLE
- 1.13.3. Normal scale of mixture models
- 1.14. Mixture models for matrix data
- 1.14.1. Finite mixtures of matrix normal distributions
- 1.14.2. Parsimonious models for modeling matrix data
- 1.15. Fitting mixture models using R
- 2. Mixture models for discrete data
- 2.1. Mixture models for categorical data
- 2.1.1. Mixture of ranking data.
- 2.1.2. Mixture of multinomial distributions
- 2.2. Mixture models for counting data
- 2.2.1. Mixture models for univariate counting data
- 2.2.2. Count data with excess zeros
- 2.2.3. Mixture models for multivariate counting data
- 2.3. Hidden Markov models
- 2.3.1. The EM algorithm
- 2.3.2. The forward-backward algorithm
- 2.4. Latent class models
- 2.4.1. Introduction
- 2.4.2. Latent class models
- 2.4.3. Latent class with covariates
- 2.4.4. Latent class regression
- 2.4.5. Latent class model with random effect
- 2.4.6. Bayes latent class analysis
- 2.4.7. Multi-level latent class model
- 2.4.8. Latent transition analysis
- 2.4.9. Case study
- 2.4.10. Further reading
- 2.5. Mixture models for mixed data
- 2.5.1. Location mixture model
- 2.5.2. Mixture of latent variable models
- 2.5.3. The MFA-MD model
- 2.5.4. The clustMD model
- 2.6. Fitting mixture models for discrete data using R
- 3. Mixture regression models
- 3.1. Mixtures of linear regression models
- 3.2. Unboundedness of mixture regression likelihood
- 3.3. Mixture of experts model
- 3.4. Mixture of generalized linear models
- 3.4.1. Generalized linear models
- 3.4.2. Mixtures of generalized linear models
- 3.5. Hidden Markov model regression
- 3.5.1. Model setting
- 3.5.2. Estimation algorithm
- 3.6. Mixtures of linear mixed-effects models
- 3.7. Mixtures of multivariate regressions
- 3.7.1. Multivariate regressions with normal mixture errors
- 3.7.2. Parameter estimation
- 3.7.3. Mixtures of multivariate regressions
- 3.8. Seemingly unrelated clusterwise linear regression
- 3.8.1. Mixtures of Gaussian seemingly unrelated linear regression models
- 3.8.2. Maximum likelihood estimation
- 3.9. Fitting mixture regression models using R
- 4. Bayesian mixture models
- 4.1. Introduction
- 4.2. Markov chain Monte Carlo methods.
- 4.2.1. Hastings-Metropolis algorithm
- 4.2.2. Gibbs sampler
- 4.3. Bayesian approach to mixture analysis
- 4.4. Conjugate priors for Bayesian mixture models
- 4.5. Bayesian normal mixture models
- 4.5.1. Bayesian univariate normal mixture models
- 4.5.2. Bayesian multivariate normal mixture models
- 4.6. Improper priors
- 4.7. Bayesian mixture models with unknown numbers of components
- 4.8. Fitting Bayesian mixture models using R
- 5. Label switching for mixture models
- 5.1. Introduction of label switching
- 5.2. Loss functions-based relabeling methods
- 5.2.1. KL algorithm
- 5.2.2. The K-means method
- 5.2.3. The determinant-based loss
- 5.2.4. Asymptotic normal likelihood method
- 5.3. Modal relabeling methods
- 5.3.1. Ideal labeling based on the highest posterior density region
- 5.3.2. Introduction of the HPD modal labeling method
- 5.3.3. ECM algorithm
- 5.3.4. HPD modal labeling credibility
- 5.4. Soft probabilistic relabeling methods
- 5.4.1. Model-based labeling
- 5.4.2. Probabilistic relabeling strategies
- 5.5. Label switching for frequentist mixture models
- 5.6. Solving label switching for mixture models using R
- 6. Hypothesis testing and model selection for mixture models
- 6.1. Likelihood ratio tests for mixture models
- 6.2. LRT based on bootstrap
- 6.3. Information criteria in model selection
- 6.4. Cross-validation for mixture models
- 6.5. Penalized mixture models
- 6.6. EM-test for finite mixture models
- 6.6.1. EM-test in single parameter component density
- 6.6.2. EM-test in normal mixture models with equal variance
- 6.6.3. EM-test in normal mixture models with unequal variance
- 6.7. Hypothesis testing based on goodness-of-fit tests
- 6.8. Model selection for mixture models using R
- 7. Robust mixture regression models
- 7.1. Robust linear regression
- 7.1.1. M-estimators.
- 7.1.2. Generalized M-estimators (GM-estimators)
- 7.1.3. R-estimators
- 7.1.4. LMS estimators
- 7.1.5. LTS estimators
- 7.1.6. S-estimators
- 7.1.7. Generalized S-estimators (GS-estimators)
- 7.1.8. MM-estimators
- 7.1.9. Robust and efficient weighted least squares estimator
- 7.1.10. Robust regression based on regularization of case-specific parameters
- 7.1.11. Summary
- 7.2. Robust estimator based on a modified EM algorithm
- 7.3. Robust mixture modeling by heavy-tailed error densities
- 7.3.1. Robust mixture regression using t-distribution
- 7.3.2. Robust mixture regression using Laplace distribution
- 7.4. Scale mixtures of skew-normal distributions
- 7.5. Robust EM-type algorithm for log-concave mixture regression models
- 7.6. Robust estimators based on trimming
- 7.7. Robust mixture regression modeling by cluster-weighted modeling
- 7.8. Robust mixture regression via mean-shift penalization
- 7.9. Some numerical comparisons
- 7.10. Fitting robust mixture regression models using R
- 8. Mixture models for high-dimensional data
- 8.1. Challenges of high-dimensional mixture models
- 8.2. Mixtures of factor analyzers
- 8.2.1. Factor analysis (FA)
- 8.2.2. Mixtures of factor analyzers (MFA)
- 8.2.3. Parsimonious mixtures of factor analyzers
- 8.3. Model-based clustering based on reduced projections
- 8.3.1. Clustering with envelope mixture models
- 8.3.2. Envelope EM algorithm for CLEMM
- 8.4. Regularized mixture modeling
- 8.5. Subspace methods for mixture models
- 8.5.1. Introduction
- 8.5.2. High-dimensional GMM
- 8.6. Variable selection for mixture models
- 8.7. High-dimensional mixture modeling through random projections
- 8.8. Multivariate generalized hyperbolic mixtures
- 8.9. High-dimensional mixture regression models
- 8.10. Fitting high-dimensional mixture models using R.
- 9. Semiparametric mixture models
- 9.1. Why semiparametric mixture models?
- 9.2. Semiparametric location shifted mixture models
- 9.3. Two-component semiparametric mixture models with one known component
- 9.4. Semiparametric mixture models with shape constraints
- 9.5. Semiparametric multivariate mixtures
- 9.6. Semiparametric hidden Markov models
- 9.6.1. Estimation methods
- 9.7. Bayesian nonparametric mixture models
- 9.8. Fitting semiparametric mixture models using R
- 9.9. Proofs
- 10. Semiparametric mixture regression models
- 10.1. Why semiparametric regression models?
- 10.2. Mixtures of nonparametric regression models
- 10.3. Mixtures of regression models with varying proportions
- 10.4. Machine learning embedded semiparametric mixtures of regressions
- 10.5. Mixture of regression models with nonparametric errors
- 10.6. Semiparametric regression models for longitudinal/functional data
- 10.7. Semiparmetric hidden Markov models with covariates
- 10.8. Some other semiparametric mixture regression models
- 10.9. Fitting semiparametric mixture regression models using R
- 10.10. Proofs
- Bibliography
- Index.