Computational techniques for text summarization based on cognitive intelligence

The book is concerned with contemporary methodologies used for automatic text summarization. It proposes interesting approaches to solve well-known problems on text-summarization using computational intelligence (CI) techniques including cognitive approaches.

Detalles Bibliográficos
Otros Autores: Priya, V. (Professor of computer science and engineering), author (author), Umamaheswari, K. (Professor of information technology), author
Formato: Libro electrónico
Idioma:Inglés
Publicado: Boca Raton ; Abingdon, Oxon : CRC Press 2023.
Edición:First edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009825851106719
Tabla de Contenidos:
  • Cover
  • Half Title
  • Title Page
  • Copyright Page
  • Table of Contents
  • About This Book
  • Preface
  • Chapter 1 Concepts of Text Summarization
  • 1.1 Introduction
  • 1.2 Need for Text Summarization
  • 1.3 Approaches to Text Summarization
  • 1.3.1 Extractive Summarization
  • 1.3.2 Abstractive Summarization
  • 1.4 Text Modeling for Extractive Summarization
  • 1.4.1 Bag-of-Words Model
  • 1.4.2 Vector Space Model
  • 1.4.3 Topic Representation Schemes
  • 1.4.4 Real-Valued Model
  • 1.5 Preprocessing for Extractive Summarization
  • 1.6 Emerging Techniques for Summarization
  • 1.7 Scope of the Book
  • References
  • Sample Code
  • Sample Screenshots
  • Chapter 2 Large-Scale Summarization Using Machine Learning Approach
  • 2.1 Scaling to Summarize Large Text
  • 2.2 Machine Learning Approaches
  • 2.2.1 Different Approaches for Modeling Text Summarization Problem
  • 2.2.2 Classification as Text Summarization
  • 2.2.2.1 Data Representation
  • 2.2.2.2 Text Feature Extraction
  • 2.2.2.3 Classification Techniques
  • 2.2.3 Clustering as Text Summarization
  • 2.2.4 Deep Learning Approach for Text Summarization
  • References
  • Sample Code
  • Chapter 3 Sentiment Analysis Approach to Text Summarization
  • 3.1 Introduction
  • 3.2 Sentiment Analysis: Overview
  • 3.2.1 Sentiment Extraction and Summarization
  • 3.2.1.1 Sentiment Extraction from Text
  • 3.2.1.2 Classification
  • 3.2.1.3 Score Computation
  • 3.2.1.4 Summary Generation
  • 3.2.2 Sentiment Summarization: An Illustration
  • Summarized Output
  • 3.2.3 Methodologies for Sentiment Summarization
  • 3.3 Implications of Sentiments in Text Summarization
  • Cognition-Based Sentiment Analysis and Summarization
  • 3.4 Summary
  • Practical Examples
  • Example 1
  • Example 2
  • Sample Code (Run Using GraphLab)
  • Example 3
  • References
  • Sample Code
  • Chapter 4 Text Summarization Using Parallel Processing Approach.
  • 4.1 Introduction
  • Parallelizing Computational Tasks
  • Parallelizing for Distributed Data
  • 4.2 Parallel Processing Approaches
  • 4.2.1 Parallel Algorithms for Text Summarization
  • 4.2.2 Parallel Bisection k-Means Method
  • 4.3 Parallel Data Processing Algorithms for Large-Scale Summarization
  • 4.3.1 Designing MapReduce Algorithm for Text Summarization
  • 4.3.2 Key Concepts in Mapper
  • 4.3.3 Key Concepts in Reducer
  • 4.3.4 Summary Generation
  • An Illustrative Example for MapReduce
  • Good Time: Movie Review
  • 4.4 Other MR-Based Methods
  • 4.5 Summary
  • 4.6 Examples
  • K-Means Clustering Using MapReduce
  • Parallel LDA Example (Using Gensim Package)
  • Sample Code: (Using Gensim Package)
  • Example: Creating an Inverted Index
  • Example: Relational Algebra (Table JOIN)
  • References
  • Sample Code
  • Chapter 5 Optimization Approaches for Text Summarization
  • 5.1 Introduction
  • 5.2 Optimization for Summarization
  • 5.2.1 Modeling Text Summarization as Optimization Problem
  • 5.2.2 Various Approaches for Optimization
  • 5.3 Formulation of Various Approaches
  • 5.3.1 Sentence Ranking Approach
  • 5.3.1.1 Stages and Illustration
  • 5.3.2 Evolutionary Approaches
  • 5.3.2.1 Stages
  • 5.3.2.2 Demonstration
  • 5.3.3 MapReduce-Based Approach
  • 5.3.3.1 In-Node Optimization Illustration
  • 5.3.4 Multi-objective-Based Approach
  • Summary
  • Exercises
  • References
  • Sample Code
  • Chapter 6 Performance Evaluation of Large-Scale Summarization Systems
  • 6.1 Evaluation of Summaries
  • 6.1.1 CNN Dataset
  • 6.1.2 Daily Mail Dataset
  • 6.1.3 Description
  • 6.2 Methodologies
  • 6.2.1 Intrinsic Methods
  • 6.2.2 Extrinsic Methods
  • 6.3 Intrinsic Methods
  • 6.3.1 Text Quality Measures
  • 6.3.1.1 Grammaticality
  • 6.3.1.2 Non-redundancy
  • 6.3.1.3 Reverential Clarity
  • 6.3.1.4 Structure and Coherence
  • 6.3.2 Co-selection-Based Methods.
  • 6.3.2.1 Precision, Recall, and F-score
  • 6.3.2.2 Relative Utility
  • 6.3.3 Content-Based Methods
  • 6.3.3.1 Content-Based Measures
  • 6.3.3.2 Cosine Similarity
  • 6.3.3.3 Unit Overlap
  • 6.3.3.4 Longest Common Subsequence
  • 6.3.3.5 N-Gram Co-occurrence Statistics: ROUGE
  • 6.3.3.6 Pyramids
  • 6.3.3.7 LSA-Based Measure
  • 6.3.3.8 Main Topic Similarity
  • 6.3.3.9 Term Significance Similarity
  • 6.4 Extrinsic Methods
  • 6.4.1 Document Categorization
  • 6.4.1.1 Information Retrieval
  • 6.4.1.2 Question Answering
  • 6.4.2 Summary
  • 6.4.3 Examples
  • Bibliography
  • Chapter 7 Applications and Future Directions
  • 7.1 Possible Directions in Modeling Text Summarization
  • 7.2 Scope of Summarization Systems in Different Applications
  • 7.3 Healthcare Domain
  • Future Directions for Medical Document Summarization
  • 7.4 Social Media
  • Challenges in Social Media Text Summarization
  • Domain Knowledge and Transfer Learning
  • Online Learning
  • Information Credibility
  • Applications of Deep Learning
  • Implicit and Explicit Information for Actionable Insights
  • 7.5 Research Directions for Text Summarization
  • 7.6 Further Scope of Research on Large-Scale Summarization
  • Conclusion
  • References
  • Appendix A: Python Projects and Useful Links on Text Summarization
  • Appendix B: Solutions to Selected Exercises
  • Index.