LangChain in Your Pocket LangChain Essentials

"Learn about LangChain and LLMs with ""LangChain in your Pocket,"" a comprehensive guide to leveraging this innovative framework for building language-based applications. Key Features Step-by-step code explanations with expected outputs for each solution Practical examples a...

Descripción completa

Detalles Bibliográficos
Otros Autores: Gupta, Mehul, author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: La Vergne : Mehul Gupta [2024]
Edición:First edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009820529906719
Tabla de Contenidos:
  • Intro
  • Copyright
  • Preface
  • Table Of Contents
  • Chapter 1: Introduction
  • 1.1 What are LLMs?
  • 1.2 Different LLM families
  • 1.3 What is LangChain used for?
  • 1.4 Why LangChain?
  • 1.5 Book Overview
  • (Untitled)
  • (Untitled)
  • Chapter 2: Hello World
  • 2.1 Setting up LangChain
  • 2.2 Name Generator
  • 2.3 Text Pre-processing
  • 2.4 Storyteller
  • 2.5 LangChain using Local LLMs
  • (Untitled)
  • (Untitled)
  • Chapter 3: Different LangChain Modules
  • Chapter 4: Models and Prompts
  • 4.1 Models
  • 4.1.1 LLM
  • 4.1.2 ChatModel
  • 4.2 Prompts
  • 4.2.1 PromptTemplate
  • 4.2.2 ChatPromptTemplate
  • Chapter 5: Chains
  • 5.1 LLMChain
  • 5.2 Auto-SQL Chain
  • 5.3 MathsChain
  • 5.4 DALL-E using LLMChain
  • 5.5 Custom Chains using LCEL
  • 5.6 Types of Chains
  • (Untitled)
  • (Untitled)
  • Chapter 6: Agents
  • 6.1 How are Agents different from Chains?
  • 6.2 Building Agents using LangChain
  • 6.3 Types of Agents
  • 6.4 Custom Tools for Agents
  • (Untitled)
  • Chapter 7: OutputParsers and Memory
  • 7.1 OutputParsers
  • 7.1.1 CommaSeparatedListOutputParser
  • 7.1.2 Custom OutputParser
  • 7.1.3 Magic Output Fixer
  • 7.2 Memory
  • 7.2.1 ConversationalBufferMemory
  • 7.2.2 ConversationSummaryMemory
  • Chapter 8: Callbacks
  • 8.1 What are Callbacks?
  • 8.2 StdOutputCallbackHandler
  • 8.3 FileHandler
  • 8.4 Custom Callbacks
  • Chapter 9: RAG Framework and Vector Databases
  • 9.1 What is RAG?
  • 9.2 Different components of RAG
  • 9.3 RAG using LangChain
  • 9.4 Multi-document RAG
  • 9.5 Recommendation System using RAG
  • 9.6 Vector Databases
  • Chapter 10: LangChain for NLP problems
  • 10.1 Summarization
  • 10.2 Text Tagging and Classification
  • 10.3 Named Entity Recognition
  • 10.4 Text Embeddings
  • 10.5 Few-Shot Classification
  • 10.5.1 What is Few-Shot Learning?
  • 10.5.2 Multi-Classification
  • 10.5.3 Example Selection.
  • 10.6 POS Tagging, Segmentation and more
  • Chapter 11: Handling LLM Hallucinations
  • 11.1 What are Hallucinations?
  • 11.2 Why do LLMs Hallucinate?
  • 11.3 LLMCheckerChain
  • 11.4 LLMSummarizationChain
  • 11.5 Avoiding Hallucinations using RAG
  • (Untitled)
  • (Untitled)
  • Chapter 12: Evaluating LLMs
  • 12.1 String Evaluators
  • 12.1.1 Criteria Evaluators
  • 12.1.2 Custom Evaluators
  • 12.2 Comparison Evaluators
  • 12.3 Trajectory Evaluators
  • (Untitled)
  • (Untitled)
  • Chapter 13: Advanced Prompt Engineering
  • 13.1 Chain of Thoughts
  • 13.1.1 Think Step by Step
  • 13.1.2 Few-Shot Prompting
  • 13.2 ReAct
  • 13.3 Tree of Thoughts
  • 13.4 Other Prompt Engineering Techniques
  • Chapter 14: Autonomous AI agents
  • 14.1 What is AGI?
  • 14.2 AutoGPT
  • 14.3 BabyAGI
  • 14.4 HuggingGPT
  • Chapter 15: LangSmith and LangServe
  • 15.1 LangSmith
  • 15.2 LangServe
  • Chapter 16: Additional Features
  • 16.1 Fallbacks
  • 16.1.1 Fallback for LLMs
  • 16.1.2 Fallback for Chains
  • 16.2 Safety
  • 16.2.1 OpenAIModerationChain
  • 16.2.2 ConstitutionalChain
  • 16.3 Model Laboratory
  • 16.4 Debugging and Verbose
  • Endnotes
  • About the Author.