Metaheuristic Optimization Algorithms Optimizers, Analysis, and Applications

Metaheuristic Optimization Algorithms: Optimizers, Analysis, and Applications presents the most recent optimization algorithms and their applications across a wide range of scientific and engineering research fields. Metaheuristic Optimization Algorithms have become indispensable tools, with applica...

Descripción completa

Detalles Bibliográficos
Autor principal: Abualigah, Laith (-)
Formato: Libro electrónico
Idioma:Inglés
Publicado: San Diego : Elsevier Science & Technology 2024.
Edición:1st ed
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009819037306719
Tabla de Contenidos:
  • Front Cover
  • Metaheuristic Optimization Algorithms
  • Copyright Page
  • Contents
  • List of contributors
  • 1 Particle swarm optimization algorithm: review and applications
  • 1.1 Introduction
  • 1.2 Particle swarm optimization
  • 1.2.1 Standard particle swarm optimization
  • 1.2.2 Particle swarm optimization algorithm
  • 1.3 Related works
  • 1.3.1 Neural networks
  • 1.3.2 Feature selection
  • 1.3.3 Data clustering
  • 1.3.4 Mobile robots
  • 1.4 Discussion
  • 1.5 Conclusion
  • References
  • 2 Social spider optimization algorithm: survey and new applications
  • 2.1 Introduction
  • 2.2 Related work
  • 2.2.1 Medical field
  • 2.2.2 Engineering field
  • 2.2.3 Mathematics field
  • 2.2.4 Artificial intelligence field
  • 2.2.5 Data science
  • 2.3 Social spider optimization method
  • 2.4 Experiment result
  • 2.5 Discussion
  • 2.6 Conclusion
  • References
  • 3 Animal migration optimization algorithm: novel optimizer, analysis, and applications
  • 3.1 Introduction
  • 3.2 Animal migration optimization algorithm procedure
  • 3.3 Related works
  • 3.3.1 Image processing
  • 3.3.2 Data clustering
  • 3.3.3 Data mining
  • 3.3.4 Benchmark functions
  • 3.3.5 Computer networks
  • 3.3.6 Neural networks
  • 3.3.7 Other applications
  • 3.4 Discussion
  • 3.5 Conclusion
  • References
  • 4 A Survey of cuckoo search algorithm: optimizer and new applications
  • 4.1 Introduction
  • 4.2 Cuckoo search algorithm
  • 4.2.1 Cuckoo rearing conduct
  • 4.2.2 Lévy trips in nature
  • 4.3 Related works
  • 4.4 Method
  • 4.5 Discussion
  • 4.6 Advanced work
  • 4.7 Conclusion
  • References
  • 5 Teaching-learning-based optimization algorithm: analysis study and its application
  • 5.1 Introduction
  • 5.2 Teaching-learning-based optimization
  • 5.2.1 Teacher section
  • 5.2.2 Learner section
  • 5.3 Literature review
  • 5.3.1 Optimization problem
  • 5.3.2 Technoeconomic analysis.
  • 5.3.3 Analytical process
  • 5.3.4 Global optimization
  • 5.3.5 Medical disease diagnosis
  • 5.3.6 Data clustering
  • 5.3.7 Shape and size optimization
  • 5.3.8 Investment decisions
  • 5.3.9 Large graph coloring problems
  • 5.4 Discussion and future works
  • 5.5 Conclusion
  • References
  • 6 Arithmetic optimization algorithm: a review and analysis
  • 6.1 Introduction
  • 6.2 Arithmetic optimization algorithm
  • 6.2.1 Initialization
  • 6.2.2 Exploration
  • 6.2.3 Exploitation
  • 6.3 Related Works
  • 6.3.1 Engineering application
  • 6.3.2 Artificial intelligence
  • 6.3.3 Chemistry
  • 6.3.4 Machine learning
  • 6.3.5 Network
  • 6.3.6 Other applications
  • 6.4 Discussion
  • 6.5 Conclusion and future work
  • References
  • 7 Aquila optimizer: review, results and applications
  • 7.1 Introduction
  • 7.2 Procedure
  • 7.2.1 Step1: (X1)
  • 7.2.2 Step 2: (X2)
  • 7.2.3 Step 3: (X3)
  • 7.2.4 Step 4: (X4)
  • 7.2.5 Aquila Optimizer Pseudocode
  • 7.3 Related works
  • 7.4 Discussion
  • 7.5 Conclusion
  • References
  • 8 Whale optimization algorithm: analysis and full survey
  • 8.1 Introduction
  • 8.2 The whale optimization algorithm
  • 8.2.1 Inspiration
  • 8.2.2 Mathematical model and the optimization algorithm
  • 8.2.2.1 Encircling prey
  • 8.2.2.2 Bubble-net attacking method
  • 8.2.2.3 Exploration phase: searching for a prey
  • 8.3 Related work
  • 8.3.1 Computer networks
  • 8.3.2 Network security
  • 8.3.3 Clustering
  • 8.3.4 Image processing
  • 8.3.5 Feature selection
  • 8.3.6 Electrical power and energy systems
  • 8.4 Discussion
  • 8.5 Conclusion and future work
  • References
  • 9 Spider monkey optimizations: application review and results
  • 9.1 Introduction
  • 9.2 Spider monkey optimization algorithm
  • 9.2.1 The behavior of spider monkey optimization
  • 9.2.2 The spider monkey optimization algorithm
  • 9.2.2.1 Preparation of the community.
  • 9.2.2.2 Second leader stage
  • 9.2.2.3 First leader stage
  • 9.2.2.4 First leader learning
  • 9.2.2.5 Second leader learning
  • 9.2.2.6 Second leader decision
  • 9.2.2.7 First leader decision
  • 9.2.3 Control parameters in spider monkey optimization
  • 9.3 Related work
  • 9.3.1 Optimization problems
  • 9.3.2 Deep learning
  • 9.3.3 Data clustering
  • 9.3.4 Big data problems
  • 9.3.5 Networking problems
  • 9.3.6 Cloud computing
  • 9.3.7 Scheduling issues
  • 9.3.8 Privacy problems
  • 9.3.9 Image processing
  • 9.3.10 Software engineering field
  • 9.3.11 Other applications
  • 9.4 Discussion
  • 9.5 Conclusion and future works
  • References
  • 10 Marine predator's algorithm: a survey of recent applications
  • 10.1 Introduction
  • 10.2 Marine Predator's Algorithm
  • 10.3 Related Works
  • 10.3.1 Engineering Problems
  • 10.3.2 Image Processing
  • 10.3.3 Benchmark Function
  • 10.3.4 Feature Selection
  • 10.4 Discussion
  • 10.5 Conclusion and Future Work
  • References
  • 11 Quantum approximate optimization algorithm: a review study and problems
  • 11.1 Introduction
  • 11.2 Methods
  • 11.2.1 Fixed p algorithm
  • 11.2.2 Concentration
  • 11.2.3 The ring of disagrees
  • 11.2.4 Maxcut on 3-regular graphs
  • 11.2.5 Relation to the quantum adiabatic algorithm
  • 11.2.6 A variant of the algorithm
  • 11.3 Related works
  • 11.4 Result
  • 11.5 Discussion
  • 11.6 Conclusion
  • References
  • 12 Crow search algorithm: a survey of novel optimizer and its recent applications
  • 12.1 Introduction
  • 12.2 Crow search algorithm
  • 12.2.1 Inspiration
  • 12.2.2 Continuous crow search algorithm
  • 12.3 Related work
  • 12.4 Conclusion and future work
  • References
  • 13 A review of Henry gas solubility optimization algorithm: a robust optimizer and applications
  • 13.1 Introduction
  • 13.2 Henry gas solubility optimization
  • 13.2.1 Henry's law
  • 13.2.2 Inspiration source.
  • 13.2.3 Henry gas solubility optimization mathematical model
  • 13.2.4 Exploration and exploitation phases
  • 13.3 Related works
  • 13.3.1 Data mining
  • 13.3.2 Genome biology (motif discovery problems)
  • 13.3.3 Engineering problems
  • 13.3.3.1 Solar energy
  • 13.3.3.2 Cloud computing task scheduling
  • 13.3.4 Benchmark functions
  • 13.3.5 Automatic voltage regulator
  • 13.3.6 Optimization tasks
  • 13.3.7 Prediction of soil shear force
  • 13.3.8 Autonomous vehicle management system
  • 13.3.9 Software engineering problems
  • 13.3.10 Machine learning
  • 13.3.11 Image processing
  • 13.3.12 Optimal power system
  • 13.4 Discussion
  • 13.5 Conclusion and future works
  • References
  • 14 A survey of the manta ray foraging optimization algorithm
  • 14.1 Introduction
  • 14.2 Manta ray foraging optimization
  • 14.2.1 Chain foraging
  • 14.2.2 Cyclone foraging
  • 14.2.3 Somersault foraging
  • 14.3 Related works
  • 14.3.1 Machine learning
  • 14.3.2 Engineering application
  • 14.3.3 Network problems
  • 14.3.4 Optimization problem
  • 14.3.5 Image processing
  • 14.3.6 Other applications
  • 14.4 Discussion
  • 14.5 Conclusion and future work
  • References
  • 15 A review of mothflame optimization algorithm: analysis and applications
  • 15.1 Introduction
  • 15.2 Moth Flame Optimization Algorithm
  • 15.2.1 Origin
  • 15.2.2 Moth Flame Optimization Algorithm
  • 15.2.3 Establishing a Moth Population
  • 15.2.4 Updating the Moths' Positions
  • 15.3 The Growth of the Moth Flame Optimization Algorithm in the Literature
  • 15.3.1 Variants
  • 15.4 Application
  • 15.4.1 Benchmark Functions
  • 15.4.2 Chemical Applications
  • 15.4.3 Economical Applications
  • 15.4.4 Image Processing
  • 15.4.5 Medical Applications
  • 15.4.5.1 Breast Cancer Detection
  • 15.4.5.2 Alzheimer's Disease Diagnosis
  • 15.4.6 Machine Learning
  • 15.5 Discussion
  • 15.6 Concluding Remarks
  • References.
  • 16 Gradient-based optimizer: analysis and application of the Berry software product
  • 16.1 Introduction
  • 16.2 Literature review
  • 16.2.1 Gradient-based optimization
  • 16.2.1.1 Theoretical background
  • 16.2.1.2 Gradient-based optimization
  • 16.2.1.2.1 Initialization
  • 16.2.1.2.2 Gradient search rule
  • 16.3 Results and discussion
  • 16.4 Conclusion
  • References
  • 17 A review of krill herd algorithm: optimization and its applications
  • 17.1 Introduction
  • 17.2 Krill herd algorithm procedure
  • 17.2.1 Krill swarms herding behavior
  • 17.2.2 Standard of krill herd
  • 17.2.2.1 Movement induced by other instances (Krill)
  • 17.2.2.2 Foraging activity
  • 17.2.3 Krill herd algorithm
  • 17.3 Related work
  • 17.4 Conclusion
  • References
  • 18 Salp swarm algorithm: survey, analysis, and new applications
  • 18.1 Introduction
  • 18.2 Related work procedure of the algorithm
  • 18.2.1 Single-objective optimization problems
  • 18.2.2 Single-objective optimization procedures
  • 18.2.3 Multiobjective optimization problems
  • 18.2.4 Multiobjective optimization procedures
  • 18.2.5 Research and studies related to the subject of the study
  • 18.3 Methods
  • 18.3.1 Stimulation
  • 18.3.2 Mathematical model
  • 18.3.3 Single-objective SALP swarm algorithm
  • 18.3.4 Multiobjective SALP Swarm algorithm
  • 18.4 Results
  • 18.4.1 Qualitative results of SALP swarm algorithm and discussion
  • 18.4.2 Quantitative results of SALP swarm algorithm and discussion
  • 18.4.3 On the CEC-BBOB-2015 test functions, SALP swarm algorithm, and harmony search
  • 18.4.4 Scalability analysis
  • 18.4.5 Results of multipurpose SALP swarm algorithm and discussion
  • 18.5 Conclusion
  • References
  • Index
  • Back Cover.