Math and Architectures of Deep Learning

Discover what's going on inside the black box! To work with deep learning you'll have to choose the right model, train it, preprocess your data, evaluate performance and accuracy, and deal with uncertainty and variability in the outputs of a deployed solution. This book takes you systema...

Descripción completa

Detalles Bibliográficos
Autor principal: Chaudhury, Krishnendu (-)
Otros Autores: Ashok, Ananya H., Narumanchi, Sujay, Shankar, Devashish
Formato: Libro electrónico
Idioma:Inglés
Publicado: New York : Manning Publications Co. LLC 2024.
Edición:1st ed
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009819037106719
Tabla de Contenidos:
  • An overview of machine learning and deep learning
  • Vectors, matrices, and tensors in machine learning
  • Classifiers and vector calculus
  • Linear algebraic tools in machine learning
  • Probability distributions in machine learning
  • Bayesian tools for machine learning
  • Function approximation : how neural networks model the world
  • Training neural networks : forward propagation and backpropagation
  • Loss, optimization, and regularization
  • Convolutions in neural networks
  • Neural networks for image classification and object detection
  • Manifolds, homeomorphism, and neural networks
  • Fully Bayes model parameter estimation
  • Latent space and generative modeling, autoencoders, and variational autoencoders.