Algebra Abstract and Modern

Algebra: Abstract and Modern, spread across 16 chapters, introduces the reader to the preliminaries of algebra and then explains topics like group theory and field theory in depth. It also features a blend of numerous challenging exercises and examples that further enhance each chapter. Covering all...

Descripción completa

Detalles Bibliográficos
Autor principal: Swamy, U. M. (-)
Otros Autores: Murthy, A. V. S. N.
Formato: Libro electrónico
Idioma:Inglés
Publicado: Noida : Pearson India 2012.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009815724506719
Tabla de Contenidos:
  • Cover
  • Contents
  • Preface
  • Part I: Preliminaries
  • Chapter 1: Sets and Relations
  • 1.1 Sets and subsets
  • 1.2 Relations and functions
  • 1.3 Equivalence relations and partitions
  • 1.4 The cardinality of a set
  • Chapter 2: Number Systems
  • 2.1 Integers
  • 2.2 Congruence modulo n
  • 2.3 Rational, real and complex numbers
  • 2.4 Ordering
  • 2.5 Matrices
  • 2.6 Determinants
  • Part II: Group Theory
  • Chapter 3: Groups
  • 3.1 Binary systems
  • 3.2 Groups
  • 3.3 Elementary properties of groups
  • 3.4 Finite groups and group tables
  • Chapter 4: Subgroups and Quotient Groups
  • 4.1 Subgroups
  • 4.2 Cyclic groups
  • 4.3 Cosets of a subgroup
  • 4.4 Lagrange's theorem
  • 4.5 Normal subgroups
  • 4.6 Quotient groups
  • Chapter 5: Homomorphisms of Groups
  • 5.1 Definition and examples
  • 5.2 Fundamental theorem of homomorphisms
  • 5.3 Isomorphism theorems
  • 5.4 Automorphisms
  • Chapter 6: Permutation Groups
  • 6.1 Cayley's theorem
  • 6.2 The symmetric group Sn
  • 6.3 Cycles
  • 6.4 Alternating group An and dihedral group Dn
  • Chapter 7: Group Actions on Sets
  • 7.1 Action of a group on a set
  • 7.2 Orbits and stabilizers
  • 7.3 Certain counting techniques
  • 7.4 Cauchy and Sylow theorems
  • Chapter 8: Structure Theory of Groups
  • 8.1 Direct products
  • 8.2 Finitely generated abelian groups
  • 8.3 Invariants of finite abelian groups
  • 8.4 Groups of small order
  • Part III: Ring Theory
  • Chapter 9: Rings
  • 9.1 Examples and elementary properties
  • 9.2 Certain special elements in rings
  • 9.3 The characteristic of a ring
  • 9.4 Subrings
  • 9.5 Homomorphisms of rings
  • 9.6 Certain special types of rings
  • 9.7 Integral domains and fields
  • Chapter 10: Ideals and Quotient Rings
  • 10.1 Ideals
  • 10.2 Quotient rings
  • 10.3 Chinese remainder theorem
  • 10.4 Prime ideals
  • 10.5 Maximal ideals
  • 10.6 Embeddings of rings.
  • Chapter 11: Polynomial Rings
  • 11.1 Rings of polynomials
  • 11.2 The division algorithm
  • 11.3 Polynomials over a field
  • 11.4 Irreducible polynomials
  • Chapter 12: Factorization in Integral Domains
  • 12.1 Divisibility in integral domains
  • 12.2 Principal ideal domains
  • 12.3 Unique factorization domains
  • 12.4 Polynomials over UFDs
  • 12.5 Euclidean domains
  • 12.6 Some applications to number theory
  • Chapter 13: Modules and Vector Spaces
  • 13.1 Modules and submodules
  • 13.2 Homomorphisms and quotients of modules
  • 13.3 Direct products and sums
  • 13.4 Simple and completely reducible modules
  • 13.5 Free modules
  • 13.6 Vector spaces
  • Part IV: Field Theory
  • Chapter 14: Extension Fields
  • 14.1 Extensions of a field
  • 14.2 Algebraic extensions
  • 14.3 Algebraically closed fields
  • 14.4 Derivatives and multiple roots
  • 14.5 Finite fields
  • Chapter 15: Galois Theory
  • 15.1 Separable and normal extensions
  • 15.2 Automorphism groups and fixed fields
  • 15.3 Fundamental theorem of Galois theory
  • Chapter 16: Selected Applications of Galois Theory
  • 16.1 Fundamental theorem of algebra
  • 16.2 Cyclic extensions
  • 16.3 Solvable groups
  • 16.4 Polynomials solvable by radicals
  • 16.5 Constructions by ruler and compass
  • Answers/Hints to Selected Even-Numbered Exercises
  • Index.