Bio-Inspired Strategies for Modeling and Detection in Diabetes Mellitus Treatment

Bio-Inspired Strategies for Modeling and Detection in Diabetes Mellitus Treatment focuses on bio-inspired techniques such as modelling to generate control algorithms for the treatment of diabetes mellitus. The book addresses the identification of diabetes mellitus using a high-order recurrent neural...

Descripción completa

Detalles Bibliográficos
Autor principal: Y Alanis, Alma (-)
Otros Autores: D Sánchez, Oscar, Vaca Gonzalez, Alonso, Perez Cisneros, Marco
Formato: Libro electrónico
Idioma:Inglés
Publicado: San Diego : Elsevier Science & Technology 2024.
Edición:1st ed
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009811836106719
Tabla de Contenidos:
  • Front Cover
  • Bio-Inspired Strategies for Modeling and Detection in Diabetes Mellitus Treatment
  • Copyright
  • Dedication
  • Contents
  • List of figures
  • List of tables
  • Biographies
  • Preface
  • 1 Introduction
  • 1.1 Diabetes Mellitus from a medical point of view
  • 1.2 Current diagnosis of Diabetes Mellitus and glucose intolerance
  • 1.2.1 Oral glucose tolerance test
  • 1.3 Current treatment of Diabetes Mellitus
  • 1.4 Prediction of Diabetes Mellitus and its complications
  • 1.5 Intelligent strategies inspired in biology and their applications in engineering and medicine
  • 1.5.1 Main branches of Computational Intelligence
  • 1.5.1.1 Evolutionary computation
  • 1.5.1.2 Swarm intelligence
  • 1.5.1.3 Neural network
  • 1.5.1.4 Fuzzy logic
  • 1.5.1.5 Artificial immune system
  • 1.5.1.6 Medical applications using bio-inspired strategies
  • References
  • 2 Problem statement
  • 2.1 State-of-the-art in modeling, identification, and detection of diabetes mellitus using bio-inspired strategies
  • 2.1.1 Parametric estimation
  • 2.1.2 Neural identification
  • 2.1.3 Prediction
  • 2.1.4 Detection
  • 2.2 Compartmental models Sorensen and Dalla Man
  • 2.2.1 Sorensen model
  • 2.2.2 Glucose subsystem
  • 2.2.3 Insulin subsystem
  • 2.2.4 Metabolic rates and dynamics of glucagon
  • 2.2.5 Dalla Man model
  • 2.3 Serial data
  • 2.3.1 Continuous glucose monitoring system data
  • 2.3.2 Tolerance tests to oral intake data
  • References
  • 3 Mathematical preliminaries
  • 3.1 Evolutionary algorithms
  • 3.1.1 Evonorm
  • 3.1.2 Differential evolution
  • 3.2 Particle swarm-based algorithms
  • 3.2.1 Particle swarm optimization
  • 3.2.2 Ant colony optimization
  • 3.3 Neural networks
  • 3.3.1 Multilayer perceptron neural network
  • 3.3.2 Discrete-time high order neural networks
  • 3.3.2.1 RHONN training algorithm
  • 3.4 Deep neural networks.
  • 3.4.1 Convolutional neural network
  • 3.4.2 Long short-term memory recurrent neural network
  • 3.4.3 Bidirectional LSTM
  • 3.4.4 LSTM fully convolutional networks
  • 3.4.5 Residual deep networks
  • References
  • 4 Parameter estimation for glucose-insulin dynamics
  • 4.1 Affine system
  • 4.1.1 Affine system of the Dalla Man model
  • 4.1.2 Affine system of Sorensen model
  • 4.2 Evolutionary optimization algorithms for parameter estimation
  • 4.2.1 Methodology for parametric estimation
  • 4.3 Parametric estimation results in compartmental models
  • 4.3.1 Sorensen parametric estimation results
  • 4.3.1.1 Results obtained by Evonorm
  • 4.3.1.2 Results obtained by Differential Evolution
  • 4.3.1.3 Results obtained by PSO
  • 4.3.1.4 Results obtained by ACO
  • 4.3.2 Dalla Man parametric estimation results
  • 4.3.2.1 Results obtained by Evonorm
  • 4.3.2.2 Results obtained by DE
  • 4.3.2.3 Results obtained by PSO
  • 4.3.2.4 Results obtained by ACO
  • References
  • 5 Neural model for glucose-insulin dynamics
  • 5.1 Identification
  • 5.2 Identification with artificial neural networks
  • 5.3 System description
  • 5.3.1 Identification with artificial neural networks offline
  • 5.3.1.1 Neuronal network configuration using CGM
  • 5.3.1.2 LSTM identification results
  • 5.3.1.3 BiLSTM results
  • 5.3.1.4 MLP results
  • 5.3.2 Identification with an artificial neural network online
  • 5.3.2.1 RHONN identification structure
  • 5.3.3 RHONN results
  • References
  • 6 Multistep predictor applied to T1DM patients
  • 6.1 Prediction
  • 6.1.1 Multistep ahead prediction strategies
  • 6.1.2 Recursive strategy
  • 6.1.3 Direct strategy
  • 6.1.4 Neuronal network configuration using CGM data
  • 6.2 Prediction results evaluation criteria
  • 6.3 Results
  • 6.3.1 Neural models with offline training
  • 6.3.1.1 MLP results
  • 6.3.1.2 LSTM results
  • 6.3.1.3 BiLSTM results.
  • 6.3.1.4 Results discussion
  • 6.3.2 Neural models with online training
  • 6.3.2.1 RHONN configuration for MSA prediction
  • 6.3.3 RHONN results
  • References
  • 7 Classification and detection of diabetes mellitus and impaired glucose tolerance
  • 7.1 Classification
  • 7.1.1 Time series classification
  • 7.2 K-means
  • 7.3 Evaluation criteria
  • 7.4 Results
  • 7.4.1 MLP results
  • 7.4.1.1 Virtual patient classification results
  • 7.4.1.2 Real patient classification results
  • 7.4.2 CNN results
  • 7.4.2.1 Virtual patient classification results
  • 7.4.2.2 Real patient classification results
  • 7.4.3 LSTM results
  • 7.4.3.1 Virtual patient classification results
  • 7.4.3.2 Real patient classification results
  • 7.4.4 LSTM-FCN results
  • 7.4.4.1 Virtual patient classification results
  • 7.4.4.2 Real patient classification results
  • 7.4.5 ResNet results
  • 7.4.5.1 Virtual patient classification results
  • 7.4.5.2 Real patient classification results
  • 7.4.6 K-Means results
  • 7.4.6.1 Virtual patient classification results
  • 7.4.6.2 Real patient classification results
  • 7.5 Results discussion
  • References
  • 8 Conclusions and future work
  • 8.1 Conclusions of Chapter 1
  • 8.2 Conclusions of Chapter 2
  • 8.3 Conclusions of Chapter 3
  • 8.4 Conclusions of Chapter 4
  • 8.5 Conclusions of Chapter 5
  • 8.6 Conclusions of Chapter 6
  • 8.7 Conclusions of Chapter 7
  • 8.8 General conclusions
  • A Model parameters
  • A.1 Dalla Man nominal parameter values
  • A.2 Sorensen nominal parameter values
  • Index
  • Back Cover.