Systems engineering neural networks

Detalles Bibliográficos
Otros Autores: Migliaccio, Alessandro, author (author), Iannone, Giovanni, author
Formato: Libro electrónico
Idioma:Inglés
Publicado: Hoboken, NJ : John Wiley & Sons, Inc [2023]
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009811329906719
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright
  • Contents
  • About the Authors
  • Acknowledgements
  • How to Read this Book
  • Part I Setting the Scene
  • Chapter 1 A Brief Introduction
  • 1.1 The Systems Engineering Approach to Artificial Intelligence (AI)
  • 1.2 Chapter Summary
  • Questions
  • Chapter 2 Defining a Neural Network
  • 2.1 Biological Networks
  • 2.2 From Biology to Mathematics
  • 2.3 We Came a Full Circle
  • 2.4 The Model of McCulloch‐Pitts
  • 2.5 The Artificial Neuron of Rosenblatt
  • 2.6 Final Remarks
  • 2.7 Chapter Summary
  • Questions
  • Sources
  • Chapter 3 Engineering Neural Networks
  • 3.1 A Brief Recap on Systems Engineering
  • 3.2 The Keystone: SE4AI and AI4SE
  • 3.3 Engineering Complexity
  • 3.4 The Sport System
  • 3.5 Engineering a Sports Club
  • 3.6 Optimization
  • 3.7 An Example of Decision Making
  • 3.8 Futurism and Foresight
  • 3.9 Qualitative to Quantitative
  • 3.10 Fuzzy Thinking
  • 3.11 It Is all in the Tools
  • 3.12 Chapter Summary
  • Questions
  • Sources
  • Part II Neural Networks in Action
  • Chapter 4 Systems Thinking for Software Development
  • 4.1 Programming Languages
  • 4.2 One More Thing: Software Engineering
  • 4.3 Chapter Summary
  • Questions
  • Source
  • Chapter 5 Practice Makes Perfect
  • 5.1 Example 1: Cosine Function
  • 5.2 Example 2: Corrosion on a Metal Structure
  • 5.3 Example 3: Defining Roles of Athletes
  • 5.4 Example 4: Athlete's Performance
  • 5.5 Example 5: Team Performance
  • 5.5.1 A Human‐Defined‐System
  • 5.5.2 Human Factors
  • 5.5.3 The Sports Team as System of Interest
  • 5.5.4 Impact of Human Error on Sports Team Performance
  • 5.5.4.1 Dataset
  • 5.5.4.2 Problem Statement
  • 5.5.4.3 Feature Engineering and Extraction
  • 5.5.4.4 Creation of Computed Columns
  • 5.5.4.5 Explorative Data Analysis (EDA)
  • 5.5.4.6 Extension ‐ Sampling Method for an Imbalanced Dataset.
  • 5.5.4.7 Building a Neural Network Model
  • 5.5.4.8 Training Outcome and Model Evaluation
  • 5.5.4.9 Evaluate Using Test Data
  • 5.6 Example 6: Trend Prediction
  • 5.7 Example 7: Symplex and Game Theory
  • 5.8 Example 8: Sorting Machine for Lego® Bricks
  • 5.8.1 Challenge for Readers
  • Part III Down to the Basics
  • Chapter 6 Input/Output, Hidden Layer and Bias
  • 6.1 Input/Output
  • 6.2 Hidden Layer
  • 6.2.1 How Many Hidden Nodes Should we Have?
  • 6.3 Bias
  • 6.4 Final Remarks
  • 6.5 Chapter Summary
  • Questions
  • Source
  • Chapter 7 Activation Function
  • 7.1 Types of Activation Functions
  • 7.2 Activation Function Derivatives
  • 7.3 Activation Functions Response to W and b Variables
  • 7.4 Final Remarks
  • 7.5 Chapter Summary
  • Questions
  • Source
  • Chapter 8 Cost Function, Back‐Propagation and Other Iterative Methods
  • 8.1 What Is the Difference between Loss and Cost?
  • 8.2 Training the Neural Network
  • 8.3 Back‐Propagation (BP)
  • 8.4 One More Thing: Gradient Method and Conjugate Gradient Method
  • 8.5 One More Thing: Newton's Method
  • 8.6 Chapter Summary
  • Questions
  • Sources
  • Chapter 9 Conclusions and Future Developments
  • Glossary and Insights
  • Index
  • EULA.