Troubleshooting for Network Operators The Road to a New Paradigm with Encrypted Traffic
Nowadays, the Internet is becoming more and more complex due to an everincreasing number of network devices, various multimedia services and a prevalence of encrypted traffic. Therefore, in this context, this book presents a novel efficient multi modular troubleshooting architecture to overcome limi...
Otros Autores: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
London, England ; Hoboken, NJ :
ISTE Ltd
[2023]
|
Edición: | First edition |
Colección: | Networks & telecommunications series. New generation networks set ;
volume 3 |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009811326006719 |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright Page
- Contents
- Preface
- Introduction
- Chapter 1. State of the Art on Network Troubleshooting
- 1.1. Network troubleshooting
- 1.1.1. State of the art
- 1.1.2. Traditional troubleshooting architecture
- 1.2. Background on encryption protocols
- 1.2.1. QUIC
- 1.2.2. Other protocols
- 1.3. Drawbacks of troubleshooting with encrypted traffic
- 1.3.1. Network performance monitoring
- 1.3.2. Intrusion detection system
- 1.4. Conclusion
- Chapter 2. Novel Global Troubleshooting Framework for Encrypted Traffic
- 2.1. Novel network troubleshooting architecture for encrypted traffic
- 2.2. Proof of concept of novel troubleshooting architecture in SDN
- 2.3. Data collection
- 2.3.1. Data classification
- 2.3.2. Monitoring tools
- 2.3.3. Parameter measurement
- 2.4. Troubleshooting dataset
- 2.4.1. Datasets for root cause analysis
- 2.4.2. Dataset for traffic classification
- 2.5. Conclusion
- Chapter 3. Traffic Classification: Novel QUIC Traffic Classifier Based on Convolutional Neural Network
- 3.1. Introduction
- 3.2. Background
- 3.2.1. Convolutional network
- 3.2.2. Characteristics of QUIC-based applications
- 3.3. Traffic classification approaches
- 3.3.1. Port-based approaches
- 3.3.2. Payload-based approaches
- 3.3.3. Statistic-based approaches
- 3.3.4. DL-based approaches
- 3.4. Novel traffic classification method for QUIC traffic
- 3.4.1. Traffic collection
- 3.4.2. Flow-based features
- 3.4.3. Preprocessing
- 3.4.4. Novel traffic classification method
- 3.5. Experimental results
- 3.5.1. Dataset specification
- 3.5.2. Performance metrics
- 3.5.3. Performance analysis
- 3.6. Conclusion
- Chapter 4. Anomaly Detection
- 4.1. Introduction
- 4.2. Anomaly detection approaches
- 4.2.1. Knowledge-based mechanisms
- 4.2.2. Rule inductions
- 4.2.3. Information theory.
- 4.2.4. ML-based mechanisms
- 4.3. Anomaly detection approach using machine learning
- 4.3.1. ML-based anomaly detection method
- 4.3.2. Data collection and processing
- 4.4. Experimental results
- 4.4.1. Experimental setup
- 4.4.2. Performance analysis
- 4.5. Conclusion
- Chapter 5. Temporary Remediation: SDN-based Application-awareSegmentRoutingforLarge-scaleNetworks
- 5.1. Introduction
- 5.2. Application-aware routing mechanisms
- 5.2.1. Application-aware routing
- 5.2.2. Application-aware MPLS
- 5.2.3. Application-aware SR
- 5.3. Adaptive segment routing mechanism for encrypted traffic
- 5.3.1. Overview of the SDN-based adaptive segment routing framework
- 5.3.2. Network monitoring
- 5.3.3. Anomaly detection
- 5.3.4. Application-aware remediation
- 5.4. Experimental results
- 5.4.1. Experiment setup
- 5.4.2. Benchmark
- 5.4.3. Performance analysis
- 5.5. Conclusion
- Chapter 6. Root Cause Analysis and Definitive Remediation
- 6.1. Root cause analysis: machine learning based root cause analysis for SDN network
- 6.1.1. Introduction
- 6.1.2. Root cause analysis mechanisms
- 6.1.3. ML-based RCA mechanism
- 6.1.4. Experimental results
- 6.1.5. Conclusion
- 6.2. Definitive remediation: adaptive QUIC BBR algorithm using reinforcement learning for dynamic networks
- 6.2.1. Introduction
- 6.2.2. Congestion control mechanisms
- 6.2.3. Adaptive BBR algorithm
- 6.2.4. Experimental results
- 6.2.5. Conclusion
- Conclusions and Prospects
- References
- Index
- EULA.