The Quick Guide to Prompt Engineering Generative AI Tips and Tricks for ChatGPT, Bard, Dall-E, and Midjourney

Detalles Bibliográficos
Autor principal: Khan, Ian (-)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated 2024.
Edición:1st ed
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009811315606719
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright Page
  • Contents
  • Preface
  • Chapter 1 The Basics of Generative Artificial Intelligence
  • Understanding AI, Machine Learning, and Deep Learning
  • What Is AI
  • What Is Machine Learning
  • What Is Deep Learning
  • What Is Generative AI
  • What Is a Language Model?
  • Applications of AI in Business
  • Chapter 2 The Role of Prompts in Generative AI
  • How Did Prompts Originate
  • How Can You Provide Data Input to an AI System
  • Making AI Accessible to Everyone
  • How Prompts Guide the AI's Response
  • What Is behind the Prompt
  • How Do Generative AI Systems Understand Input and Provide Output
  • What Goes behind the Scenes in a Generative AI System
  • The Importance of Carefully Engineering Prompts
  • Chapter 3 A Step-by-Step Guide to Creating Effective Prompts
  • Various Platforms and Their Prompt Formats
  • Recognizing Characters and Depth of Prompts
  • Some Platforms May Have Prompts Character Limitation
  • Prompts Need Depth and Context
  • Differentiate between Implicit versus Explicit Prompts
  • Testing Often and Iterate
  • Understanding a Prompt Dictionary
  • Consistency
  • Optimization
  • Training and Onboarding
  • Flexibility
  • Key Factors to Consider: Context, Clarity, and Conciseness
  • Providing Context
  • Clarity
  • Conciseness
  • Some Everyday Usage Examples
  • Common Mistakes to Avoid When Crafting Prompts
  • Chapter 4 Diving Deeper: Structure and Nuances of Prompts
  • Understanding Different Components of a Prompt
  • Introduction to the Anatomy of a Prompt
  • The Role of Context in Shaping AI Responses
  • Importance of Specificity and Clarity in Prompt Formulation
  • Using Temperature and Max Tokens to Guide AI Responses
  • Balancing Creativity and Control in Your Prompts
  • The Art of Iterative Prompting
  • Strategies for Iterative Improvement in Prompting.
  • Common Pitfalls and How to Avoid Them
  • Advanced Prompting Techniques
  • Chapter 5 Prompt Engineering across Industry
  • Chapter 6 Practical Guide to Prompt Engineering
  • Step-by-Step Guide to Crafting Your First Prompt
  • Step-by-Step Instruction Guide
  • Step 1: Identify the Goal
  • Step 2: Start Simple
  • Step 3: Gauge the Initial Response
  • Step 4: Refine and Contextualize
  • Step 5: Test for Variability
  • Step 6: Iterate and Adapt
  • Step 7: Utilize Advanced Parameters (If Available)
  • Step 8: Broaden Your Horizons
  • Step 9: Document and Learn
  • Step 10: Share and Collaborate
  • Testing and Evaluating Your Prompts
  • Understand the Importance
  • Conduct Dry Runs
  • Employ the A/B Testing Approach
  • Gather Peer Feedback
  • Use Quantitative Metrics
  • Consider Diverse Scenarios
  • Reiterate Based on Outcomes
  • Understand Model Limitations
  • Document Learnings
  • Stay Updated
  • Iterating and Refining Your Prompts
  • Understand the Need for Iteration
  • Analyze the AI's Output
  • Enhance Specificity
  • Adjust the Phrasing
  • Provide Context
  • Test across Multiple Scenarios
  • Seek External Feedback
  • Monitor Evolving Objectives
  • Leverage Advanced Features
  • Document and Review
  • Prompt Engineering for Various Applications
  • Customer Support Chatbots
  • Research and Academic Analysis
  • Creative Writing and Content Generation
  • Financial Analysis
  • Medical Diagnostics Assistance
  • Language Translation
  • Entertainment and Media
  • Legal Applications
  • E-commerce and Retail
  • Urban Planning and Architecture
  • Tips and Tricks for Advanced Prompt Engineering
  • Multistep Prompts
  • Utilize Contextual Tokens
  • Layered Refinement
  • Exploit the "Nudging" Technique
  • Active Feedback Loops
  • Prompt Templates
  • Limit and Guide AI Exploration
  • Explore AI's Metacognition
  • Parallel Testing
  • Stay Abreast with Evolving Models.
  • Advanced Techniques: Machine Learning for Prompt Optimization
  • Why ML?
  • Supervised Learning for Prompt Refinement
  • Reinforcement Learning (RL) in Action
  • Hyperparameter Tuning for Prompts
  • Clustering for Response Analysis
  • Natural Language Processing (NLP) for Insight Extraction
  • Feedback Loops with Active Learning
  • Generative Models for Prompt Creation
  • Transfer Learning for Rapid Adaptation
  • Periodic Model Evaluation and Retraining
  • Chapter 7 Ethical Considerations in Prompt Engineering
  • Understanding Bias in AI and Prompts
  • Data Imbalance
  • Historical Biases
  • Subtle and Unintentional Biases
  • Feedback Loops
  • Strategies for Reducing Bias in Your Prompts
  • Comprehensive Training
  • Diverse Input Review
  • Use Neutral Language
  • Fact-Based Design
  • Dynamic Adaptability
  • Use of Anti-bias Tools
  • Thorough Testing
  • Iterative Refinement
  • Transparency and Openness
  • Collaboration with Ethicists
  • Community Engagement
  • Setting Ethical Standards
  • Documented Feedback Mechanism
  • Ethical Guidelines for Prompt Design
  • Prioritize Fairness and Avoid Discrimination
  • Maintain Transparency
  • Protect User Privacy
  • Safeguard against Harmful Outputs
  • Ensure Accountability
  • Promote User Autonomy
  • Ensure Cultural Sensitivity
  • Avoid Reinforcing Stereotypes
  • Practice Continual Learning and Adaptation
  • Engage with a Diverse Group
  • Implement Ethical Review Processes
  • Educate and Empower Users
  • Commit to Long-Term Responsibility
  • Prompts and Privacy Considerations
  • Collection of Personal Information
  • Storage and Security
  • Data Anonymization
  • Data Sharing and Third-Party Access
  • Children's Data
  • Contextual Awareness
  • Consent Revocation
  • Legal and Regulatory Compliance
  • Transparency and User Education
  • Ethical Boundaries
  • Audit Trails
  • Feedback Loops.
  • Regular Updates and Reviews
  • Future Ethical Challenges in Prompt Engineering
  • Sophistication of AI Responses
  • Hyper-personalization
  • Autonomy of AI Decisions
  • Manipulative Prompts
  • Inclusivity and Representation
  • AI as a Social Actor
  • Ethics of Emotional AI
  • Privacy Erosion
  • Economic and Employment Implications
  • Deepfake and Reality Distortion
  • Transparency and Accountability
  • Regulation and Censorship
  • Moral and Ethical Dilemmas
  • Advanced Techniques: Automated Bias Detection
  • Origins of Bias in AI
  • Automated Bias Detection
  • Benefits
  • Techniques
  • Challenges
  • Ethical Considerations
  • Applications in Prompt Engineering
  • Case Studies: Search Engines
  • The Road Ahead
  • Chapter 8 Application-Specific Prompt Engineering
  • Prompts for Creative Writing
  • Bridging Human Imagination with AI
  • Genre-Specific Prompts
  • Inspiration and Idea Generation
  • Character Development
  • Dynamic Interaction
  • Multimodal Applications
  • Ethical Considerations
  • Challenges and Limitations
  • Future Potential
  • Prompts for Business Applications
  • Data Analysis and Insights
  • Customer Support and Interaction
  • Market Research and Consumer Insights
  • Content Generation
  • Financial Forecasting
  • Personalization in Marketing
  • Human Resources and Recruitment
  • Ethical Implications
  • Challenges
  • Future Trajectories
  • Prompts for Educational Uses
  • Personalized Learning Paths
  • Tutoring and Homework Assistance
  • Language Learning
  • Special Education Needs
  • Interactive Simulations
  • Assessment and Feedback
  • Augmenting Classroom Discussions
  • Historical and Cultural Contexts
  • Challenges
  • Ethical Implications
  • Future Directions
  • Prompts for Coding and Software Development
  • Code Generation
  • Debugging Assistance
  • Code Optimization
  • System Design and Architecture
  • Integration and API Usage.
  • Documentation and Commenting
  • Code Review and Quality Assurance
  • Predictive Troubleshooting
  • Personalized Learning and Skill Development
  • Ethical Implications and Best Practices
  • Future Prospects
  • Prompts for Entertainment and Gaming
  • Storyline Generation
  • Character Design and Evolution
  • Dynamic Game Environments
  • Music and Sound Effects
  • Dialogue Generation
  • Real-Time Player Feedback
  • Predictive Gaming Trends
  • Virtual Reality (VR) and Augmented Reality (AR) Experiences
  • Ethical Gaming Practices
  • Personalized Gaming Experiences
  • Crowd Control and Online Moderation
  • Gamification of Non-gaming Platforms
  • Merchandising and Ancillary Content
  • Advanced Techniques Personalized and Adaptive Prompts
  • The Need for Personalization and Adaptability
  • Personalized Prompts-Beyond Generic Queries
  • Adaptive Prompts-Respondingto Dynamic Contexts
  • Balancing Privacy with Personalization
  • Feedback Loops for Adaptive Prompting
  • Branching Prompts for Multistep Interactions
  • Real-World Application: E-learning Platforms
  • Personalized Health Care Recommendations
  • Entertainment and Media Consumption
  • E-commerceand Online Retail
  • Challenges Ahead
  • Continuous Learning and Evolution
  • Chapter 9 Advanced Topics in Prompt Engineering
  • A/B Testing of Prompts
  • Understanding A/B Testing
  • Why A/B Testing Is Crucial
  • Setting the Right Metrics
  • Crafting Variations
  • Sample Size and Duration
  • Analyzing Results
  • Iterative Testing
  • Potential Pitfalls
  • Beyond Binary Testing
  • Ethical Considerations
  • Personalized and Adaptive Prompts
  • The Rise of Personalization
  • What Is a Personalized Prompt?
  • The Need for Adaptive Prompts
  • Data: The Backbone of Personalization
  • Feedback Loops Are Crucial
  • Dynamic Learning and Prompt Evolution
  • Ethical Considerations
  • Challenges of Over-Personalization.
  • Multimodal Personalization.