Partition of Unity Methods

PARTITION OF UNITY METHODS Master the latest tool in computational mechanics with this brand-new resource from distinguished leaders in the field While it is the number one tool for computer aided design and engineering, the finite element method (FEM) has difficulties with discontinuities, singular...

Descripción completa

Detalles Bibliográficos
Autor principal: Bordas, St¿phane P. A. (-)
Otros Autores: Menk, Alexander, Natarajan, Sundararajan
Formato: Libro electrónico
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated 2023.
Edición:1st ed
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009811312406719
Tabla de Contenidos:
  • Intro
  • Partition of Unity Methods
  • Contents
  • List of Contributors
  • Preface
  • Acknowledgments
  • 1 Introduction
  • 1.1 The Finite Element Method
  • 1.2 Suitability of the Finite Element Method
  • 1.3 Some Limitations of the FEM
  • 1.4 The Idea of Enrichment
  • 1.5 Conclusions
  • References
  • 2 A Step-by-Step Introduction to Enrichment
  • 2.1 History of Enrichment for Singularities and Localized Gradients
  • 2.1.1 Enrichment by the ``Method of Supplementary Singular Functions''
  • 2.1.2 Finite Element with a Singularity
  • 2.1.3 Partition of Unity Enrichment
  • 2.1.4 Mesh Overlay Methods
  • 2.1.5 Enrichment for Strong Discontinuities
  • 2.2 Weak Discontinuities for One-dimensional Problems
  • 2.2.1 Conventional Finite Element Solution
  • 2.2.2 eXtended Finite Element Solution
  • 2.2.3 eXtended Finite Element Solution with Nodal Subtraction/Shifting
  • 2.2.4 Solution
  • 2.3 Strong Discontinuities for One-dimensional Problem
  • 2.4 Conclusions
  • References
  • 3 Partition of Unity Revisited
  • 3.1 Completeness, Consistency, and Reproducing Conditions
  • 3.2 Partition of Unity
  • 3.3 Enrichment
  • 3.3.1 Description of Geometry of Enrichment Features
  • 3.3.2 Choice of Enrichment Functions
  • 3.3.3 Imposition of boundary conditions
  • 3.3.4 Numerical Integration of theWeak Form
  • 3.4 Numerical Examples
  • 3.4.1 One-Dimensional Multiple Interface
  • 3.4.2 Two-Dimensional Circular Inhomogeneity
  • 3.4.3 Infinite Plate with a Center Crack Under Tension
  • 3.5 Conclusions
  • References
  • 4 Advanced Topics
  • 4.1 Size of the Enrichment Zone
  • 4.2 Numerical Integration
  • 4.2.1 Polar Integration
  • 4.2.2 Equivalent Polynomial Integration
  • 4.2.3 Conformal Mapping
  • 4.2.4 Strain Smoothing in XFEM
  • 4.3 Blending Elements and Corrections
  • 4.3.1 Blending Between Different Partitions of Unity
  • 4.3.2 Interpolation Error in Blending Elements.
  • 4.3.3 Addressing Blending Phenomena
  • 4.4 Preconditioning Techniques
  • 4.4.1 The First Preconditioner Proposed for the XFEM
  • 4.4.2 A domain Decomposition Preconditioner for the XFEM
  • References
  • 5 Applications
  • 5.1 Linear Elastic Fracture in Two Dimensions with XFEM
  • 5.1.1 Inclined Crack in Tension
  • 5.1.2 Example of a Crack Inclusion Interaction Problem
  • 5.1.3 Effect of the Distance Between the Crack and the Inclusion
  • 5.2 Numerical Enrichment for Anisotropic Linear Elastic Fracture Mechanics
  • 5.3 Creep and Crack Growth in Polycrystals
  • 5.4 Fatigue Crack Growth Simulations
  • 5.5 Rectangular Plate with an Inclined Crack Subjected to Thermo-Mechanical Loading
  • References
  • 6 Recovery-Based Error Estimation and Bounding in XFEM
  • 6.1 Introduction
  • 6.2 Error Estimation in the Energy Norm. The ZZ Error Estimator
  • 6.2.1 The SPR Technique
  • 6.2.2 The MLS Approach
  • 6.3 Recovery-based Error Estimation in XFEM
  • 6.3.1 The SPR-CX Technique
  • 6.3.2 The XMLS Technique
  • 6.3.3 The MLS-CX Technique
  • 6.3.4 On the Roles of Enhanced Recovery and Admissibility
  • 6.4 Recovery Techniques in Error Bounding. Practical Error Bounds.
  • 6.5 Error Estimation in Quantities of Interest
  • 6.5.1 Recovery-based Estimates for the Error in Quantities of Interest
  • 6.5.2 The Stress Intensity Factor as QoI: Error Estimation
  • References
  • 7 -FEM: An Efficient Simulation Tool Using Simple Meshes for Problems in Structure Mechanics and Heat Transfer
  • 7.1 Introduction
  • 7.2 Linear Elasticity
  • 7.2.1 Dirichlet Conditions
  • 7.2.2 Mixed Boundary Conditions
  • 7.3 Linear Elasticity with Multiple Materials
  • 7.4 Linear Elasticity with Cracks
  • 7.5 Heat Equation
  • 7.6 Conclusions and Perspectives
  • References
  • 8 eXtended Boundary Element Method (XBEM) for Fracture Mechanics and Wave Problems
  • 8.1 Introduction.
  • 8.2 Conventional BEM Formulation
  • 8.2.1 Elasticity
  • 8.2.2 Helmholtz Wave Problems
  • 8.3 Shortcomings of the Conventional Formulations
  • 8.4 Partition of Unity BEM Formulation
  • 8.5 XBEM for Accurate Fracture Analysis
  • 8.5.1 Williams Expansions
  • 8.5.2 Local XBEM Enrichment at Crack Tips
  • 8.5.3 Results
  • 8.5.4 Auxiliary Equations and Direct Evaluation of Stress Intensity Factors
  • 8.5.5 Fracture in Anisotropic Materials
  • 8.5.6 Conclusions
  • 8.6 XBEM for Short Wave Simulation
  • 8.6.1 Background to the Development of Plane Wave Enrichment
  • 8.6.2 Plane Wave Enrichment
  • 8.6.3 Evaluation of Boundary Integrals
  • 8.6.4 Collocation Strategy and Solution
  • 8.6.5 Results
  • 8.6.6 Choice of Basis Functions
  • 8.6.7 Scattering from Sharp Corners
  • 8.7 Conditioning and its Control
  • 8.8 Conclusions
  • References
  • 9 Combined Extended Finite Element and Level Set Method (XFE-LSM) for Free Boundary Problems
  • 9.1 Motivation
  • 9.2 The Level Set Method
  • 9.2.1 The Level Set Representation of the Embedded Interface
  • 9.2.2 The Basic Level Set Evolution Equation
  • 9.2.3 Velocity Extension
  • 9.2.4 Level Set Function Update
  • 9.2.5 Coupling the Level Set Method with the XFEM
  • 9.3 Biofilm Evolution
  • 9.3.1 Biofilms
  • 9.3.2 Biofilm Modeling
  • 9.3.3 Two-Dimensional Model
  • 9.3.4 Solution Strategy
  • 9.3.5 Variational Form
  • 9.3.6 Enrichment Functions
  • 9.3.7 Interface Conditions
  • 9.3.8 Interface Speed Function
  • 9.3.9 Accuracy and Convergence
  • 9.3.10 Numerical Results
  • 9.4 Conclusion
  • Acknowledgment
  • References
  • 10 XFEM for 3D Fracture Simulation
  • 10.1 Introduction
  • 10.2 Governing Equations
  • 10.3 XFEM Enrichment Approximation
  • 10.4 Vector Level Set
  • 10.5 Computation of Stress Intensity Factor
  • 10.5.1 Brittle Material
  • 10.5.2 Ductile Material
  • 10.6 Numerical Simulations.
  • 10.6.1 Computation of Fracture Parameters
  • 10.6.2 Fatigue Crack Growth in Compact Tension Specimen
  • 10.7 Summary
  • References
  • 11 XFEM Modeling of Cracked Elastic-Plastic Solids
  • 11.1 Introduction
  • 11.2 Conventional von Mises Plasticity
  • 11.2.1 Constitutive Model
  • 11.2.2 Asymptotic Crack Tip Fields
  • 11.2.3 XFEM Enrichment
  • 11.2.4 Numerical Implementation
  • 11.2.5 Representative Results
  • 11.3 Strain Gradient Plasticity
  • 11.3.1 Constitutive Model
  • 11.3.2 Asymptotic Crack Tip Fields
  • 11.3.3 XFEM Enrichment
  • 11.3.4 Numerical Implementation
  • 11.3.5 Representative Results
  • 11.4 Conclusions
  • References
  • 12 An Introduction to Multiscale analysis with XFEM
  • 12.1 Introduction
  • 12.1.1 Types of Multiscale Analysis
  • 12.2 Molecular Statics
  • 12.2.1 Atomistic Potentials
  • 12.2.2 A simple 1D Harmonic Potential Example
  • 12.2.3 The Lennard-Jones Potential
  • 12.2.4 The Embedded Atom Method
  • 12.3 Hierarchical Multiscale Models of Elastic Behavior - The Cauchy-Born Rule
  • 12.4 Current Multiscale Analysis - The Bridging Domain Method
  • 12.5 The eXtended Bridging Domain Method
  • 12.5.1 Simulation of a Crack Using XFEM
  • References
  • Index
  • EULA.