Experimental Methods for Membrane Applications in Desalination and Water Treatment

Detalles Bibliográficos
Autor principal: Salinas-Rodriguez, Sergio G. (-)
Otros Autores: Villacorte, Loreen O.
Formato: Libro electrónico
Idioma:Inglés
Publicado: London : IWA Publishing 2024.
Edición:1st ed
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009811295006719
Tabla de Contenidos:
  • Intro
  • Cover
  • Contents
  • Foreword
  • Contributors
  • About the editors
  • Chapter 1: Feedwater Quality Guidelines and Assessment Methods for Membrane-based Desalination
  • 1.1 INTRODUCTION
  • 1.2 PARTICULATE FOULING POTENTIAL
  • 1.3 INORGANIC FOULING AND SCALING POTENTIAL
  • 1.4 ORGANIC FOULING POTENTIAL
  • 1.4.1 Organic carbon
  • 1.4.2 UV absorbance and fluorescence
  • 1.4.3 LC-OCD
  • 1.4.4 TEP
  • 1.4.5 Oil and grease
  • 1.5 BIOFOULING POTENTIAL
  • 1.5.1 Bacterial growth potential
  • 1.5.2 Assimilable organic carbon
  • 1.5.3 Biodegradable dissolved organic carbon
  • 1.5.4 Phosphate
  • 1.6 OUTLOOK AND OPPORTUNITIES
  • 1.7 ABBREVIATIONS AND SYMBOLS
  • 1.8 REFERENCES
  • Part 1: Membrane processes
  • Chapter 2: Microfiltration and ultrafiltration
  • 2.1 INTRODUCTION
  • 2.1.1 Advantages of ultrafiltration compared to conventional treatment
  • 2.2 DESIGN AND OPTIMIZE MEMBRANE PROCESSES
  • 2.3 OBJECTIVE OF THE FILTRATION PROCESS
  • 2.4 MEMBRANE TYPES
  • 2.5 BASIC EQUATIONS
  • 2.6 NORMALIZATION
  • 2.7 MEMBRANE FOULING
  • 2.8 SUSTAINABLE FLUX
  • 2.9 MEMBRANE DESIGN AND MODULE
  • 2.10 PRETREATMENT
  • 2.11 CLEANINGS
  • 2.11.1 Optimization of hydraulic cleaning
  • 2.12 MEMBRANE CASCADES
  • 2.13 SUMMARY
  • 2.14 REFERENCES
  • Chapter 3: Reverse Osmosis and Nanofiltration
  • 3.1 THE RISE OF REVERSE OSMOSIS
  • 3.2 SUSTAINAIBLITY OF REVERSE OSMOSIS
  • 3.3 UNDERSTANDING THE OSMOSIS PROCESS
  • 3.3.1 Semi-permeable membranes
  • 3.3.2 The reverse osmosis process
  • 3.4 EQUATIONS
  • 3.4.1 Fundamental equations
  • 3.4.1.1 Osmotic pressure
  • 3.4.1.2 Water flux
  • 3.4.1.3 Salt transport
  • 3.4.1.4 The difference between convective and concentration driven flows
  • 3.4.2 System equations
  • 3.4.3 Factors affecting membrane performance
  • 3.4.3.1 Feed pressure
  • 3.4.3.2 Feed concentration
  • 3.4.3.3 Feed temperature
  • 3.4.3.4 Concentration polarization.
  • 3.5 REVERSE OSMOSIS MEMBRANES
  • 3.5.1 The significance of desalination
  • 3.6 PERFORMANCE MONITORING
  • 3.7 NORMALIZATION
  • 3.7.1 Why normalization matters
  • 3.7.2 Equations
  • 3.7.2.1 Normalized permeate flow
  • 3.7.2.2 Normalized salt rejection
  • 3.7.2.3 Normalized pressure drop
  • 3.8 FOULING
  • 3.8.1 Biofouling
  • 3.8.2 Organic fouling
  • 3.8.3 Particulate fouling
  • 3.8.4 Scaling
  • 3.8.5 Integrity failure
  • 3.9 REFERENCES
  • Chapter 4: Forward Osmosis
  • 4.1 INTRODUCTION: PRINCIPLES OF FORWARD OSMOSIS
  • 4.2 MATERIALS AND EXPERIMENTAL SET-UP
  • 4.2.1 Membrane configurations
  • 4.2.2 Experimental modes
  • 4.2.3 Draw solutions: properties, regeneration, types and selection criteria
  • 4.3 EXPERIMENTAL METHODS
  • 4.3.1. Typical parameters and phenomena
  • 4.3.2 FO process design constraints and considerations
  • 4.3.3 Best practices Transmembrane Pressure (TMP)
  • 4.4 DATA ANALYSIS: BASIC FO PROCESS DESIGN
  • 4.4.1 FO Fundamental Equations
  • 4.4.2 FO Module Mass Balance
  • 4.4.3 FO Design Considerations
  • 4.5 APPLICATION EXAMPLES
  • 4.6 OUTLOOK
  • 4.7 REFERENCES
  • Chapter 5: Membrane Distillation
  • 5.1 INTRODUCTION
  • 5.2 MATERIALS, EXPERIMENTAL SET-UP
  • 5.2.1 MD membranes
  • 5.2.1.1 Membrane properties
  • 5.2.1.2 Membrane materials
  • 5.2.2 Experimental set-up
  • 5.2.2.1 MD confi gurations
  • 5.2.3 Process
  • 5.2.3.1 MD system
  • 5.2.3.2 Operating parameters
  • 5.2.4 MD modules
  • 5.3 METHODS
  • 5.3.1 Process measurements and calculations
  • 5.3.1.1 Permeate flux
  • 5.3.1.2 Solute rejection
  • 5.3.1.3 Logarithmic temperature difference
  • 5.3.2 Membrane characterization
  • 5.3.2.1 Physical and morphology properties
  • 5.3.2.2 Chemical properties (a) Elemental composition
  • 5.3.2.3 Thermal properties (a) Thermal conductivity
  • 5.5 OUTLOOK
  • 5.6 REFERENCES
  • Part 2: Particulate fouling
  • Chapter 6: Silt Density Index
  • 6.0 ABSTRACT.
  • 6.1 DEVELOPMENT OF THE FOULING INDEX
  • 6.2 SILT AS A COMPONENT OF MEMBRANE FOULING
  • 6.3 STANDARDIZATON OF THE SILT DENSITY INDEX
  • 6.4 METHODS AND PROCEDURES
  • 6.5 LIMITATIONS OF THE SDI
  • 6.6 ALTERNATIVES TO THE SDI
  • 6.7 SUMMARY
  • 6.8 REFERENCES
  • Chapter 7: Modified Fouling Index (MFI-0.45)
  • 7.1 INTRODUCTION
  • 7.2 THEORY PARTICULATE FOULING
  • 7.3 MEASURING MFI-0.45
  • 7.3.1 Filtration set-up and materials
  • 7.3.1.1 Membrane filters
  • 7.3.1.2 Filter holder
  • 7.3.1.3 Feedwater reservoir
  • 7.3.1.4 Electronic mass balance
  • 7.3.1.5 Software for data acquisition
  • 7.3.1.6 Pressure regulator and gauge
  • 7.3.1.7 Pressure transducer
  • 7.3.1.8 Non-plugging water
  • 7.3.2 MFI-0.45 testing procedure
  • 7.3.3 MFI-0.45 calculation procedure
  • 7.4 MEMBRANE PROPERTIES OF COMMERCIAL MEMBRANES
  • 7.5 EFFECT OF FILTER MATERIAL ON MFI-0.45
  • 7.5.1 Effect of membrane support holder
  • 7.6 APPLICATION: WATER QUALITY MONITORING OF NORTH SEA WATER
  • 7.7 MONITORING OF MFI-0.45 IN A FULL-SCALE DESALINATION PLANT
  • 7.8 REFERENCES
  • Chapter 8: Modified Fouling Index Ultrafiltration (MFI-UF) Constant Flux
  • 8.1 INTRODUCTION
  • 8.2 THEORY PARTICULATE FOULING
  • 8.2.1 Deposition factor
  • 8.2.2 The particulate fouling prediction model
  • 8.3 MEASURING MFI-UF CONSTANT FLUX
  • 8.3.1 Filtration set-up and materials
  • 8.3.1.1 Membrane filters
  • 8.3.1.2 Constant flow pump
  • 8.3.1.4 Membrane filter holder
  • 8.3.1.5 Syringe
  • 8.3.1.6 Ultra-pure water
  • 8.3.1.7 Tubing
  • 8.3.1.8 Software
  • 8.3.2 Membrane cleaning and conditioning
  • 8.3.3 MFI-UF testing procedure
  • 8.3.3.1 Selection of filtration flux rate
  • 8.3.4 Calculation procedure
  • 8.3.4.1 Example of membrane resistance calculation of UPW
  • 8.3.4.2 Example of MFI-UF calculation
  • 8.3.5 Reproducibility
  • 8.3.6 Blank and limit of detection
  • 8.3.7 Sample storage.
  • 8.3.8 Concentration of particles
  • 8.3.9 Membrane material
  • 8.4 VARIABLES AND APPLICATIONS OF THE MFI-UF
  • 8.4.1 Plant profiling and water quality monitoring
  • 8.4.2 Flux rate
  • 8.4.3 Predicting rate of fouling of seawater RO systems
  • 8.4.4 Comparing fouling indices
  • 8.5 REFERENCES
  • Part 3: Inorganic fouling and scaling
  • Chapter 9: Inorganic Fouling: Characterization Tools and Mitigation
  • 9.1 INTRODUCTION
  • 9.2 MAIN COMPONENTS OF INORGANIC FOULING
  • 9.2.1 Colloidal matter/particulate
  • 9.2.2 Metals
  • 9.2.3 Scaling
  • 9.2.4 OTHER COMPONENTS
  • 9.3 METHODS FOR INORGANIC FOULING IDENTIFICATION
  • 9.4 METHODS FOR INORGANIC FOULING REMOVAL
  • 9.5 REFERENCES
  • Chapter 10: Assessing Scaling Potential with Induction Time and a Once-through Laboratory Scale RO System
  • 10.1 INTRODUCTION
  • 10.2 INDUCTION TIME MEASUREMENTS
  • 10.2.1 Experimental setup
  • 10.2.1.1 Glass reactor
  • 10.2.1.3 pH meter
  • 10.2.1.4 Peristaltic pump
  • 10.2.1.5 Thermostat
  • 10.2.2 Experimental procedure
  • 10.2.2.1 Preparation of artificial brackish water
  • 10.2.2.2 Induction time measurement
  • 10.2.3 Calculation of induction time
  • 10.2.4 Cleaning of the reactor
  • 10.2.5 Example of application of induction time
  • 10.3 ONCE THROUGH LAB-SCALE RO SYSTEM
  • 10.3.1 Experimental set-up
  • 10.3.2 Experimental protocol
  • 10.3.3 Example of application
  • 10.4 OUTLOOK AND FINAL COMMENTS
  • 10.5 REFERENCES
  • Part 4: Organic fouling
  • Chapter 11: Practical Considerations of Using LC-OCD for Organic Matter Analysis in Seawater
  • 11.1 INTRODUCTION
  • 11.2 LC-OCD ANALYSIS
  • 11.2.1 Instrumentation and chromatogram integration
  • 11.2.2 Effect of salinity on organic characterization and calibration
  • 11.2.3 LEVEL OF DETECTION
  • 11.2.4 REPRODUCIBILITY OF LC-OCD
  • 11.2.5 CHARACTERISATION OF ORGANIC MIXTURES
  • 11.2.6 Applications.
  • 11.2.6.1 OM composition in seawater
  • 11.2.6.2 Fouling behaviour of organic matter
  • 11.2.6.3 Effectiveness of pretreatment methods
  • 11.3 CONCLUSIONS
  • 11.4 REFERENCES
  • Chapter 12: Fluorescence Excitation Emission Matrix (EEM) Spectroscopy
  • 12.1 INTRODUCTION
  • 12.2 SAMPLING &amp
  • STORAGE
  • 12.3 BENCHTOP INSTRUMENTATION
  • 12.4 QUALITY ASSURANCE
  • 12.5 INTERFERENCES
  • 12.6 DATA PROCESSING
  • 12.7 DATA ANALYSIS
  • 12.7.1 PARAFAC
  • 12.8 APPLICATION IN MEMBRANE SYSTEMS
  • 12.9 REFERENCES
  • Chapter 13: Transparent Exopolymer Particles
  • 13.1 INTRODUCTION
  • 13.2 QUANTIFICATION METHODS
  • 13.2.1 Alcian blue dye preparation
  • 13.2.2 TEP0.4µm measurement
  • 13.2.3 TEP10kDa measurement
  • 13.2.4 Method calibration
  • 13.2.4.1 Xanthan gum standard preparation
  • 13.2.4.2 TEP0.4µm calibration
  • 13.2.4.3 TEP0.4µm calibration
  • 13.2.4.4 TEP10kDa calibration
  • 13.2.5 Other considerations
  • 13.2.5.1 Limit of detection
  • 13.2.5.2 Impact of storage on TEP concentration
  • 13.2.6 Application and interpretation
  • 13.3 SUMMARY AND OUTLOOK
  • 13.4 REFERENCES
  • Part 5: Biological fouling
  • Chapter 14: Genomics Tools to Study Membrane-Based Systems
  • 14.1 INTRODUCTION
  • 14.2 EXPERIMENTAL DESIGN AND SAMPLE PREPARATION
  • 14.2.1 Experimental Design in a Metagenomics
  • 14.2.2 Sample Collection and Preservation
  • 14.2.3 DNA Extraction
  • 14.2.4 Library Preparation
  • 14.2.5 Sequencing platforms
  • 14.3 BIOINFORMATICS ANALYSIS
  • 14.3.1 Data Pre-treatment
  • 14.3.2 Amplicon-based approach
  • 14.3.3 Metagenomics, read-based approach
  • 14.3.4 Metagenomics, assembly-based approach
  • 14.3.5 Metagenome-assembled Genome (MAG) Binning
  • 14.3.6 Supervised and unsupervised binning
  • 14.3.7 Functional annotation
  • 14.3.8 Genome-resolved Metatranscriptomics
  • 14.4 DATA SHARING AND STORAGE
  • 14.5 BIOINFORMATICS ANALYSIS WORKFLOW EXAMPLES.
  • 14.5.1 Amplicon Sequences Processing Workflow.