Experimental Methods for Membrane Applications in Desalination and Water Treatment
Autor principal: | |
---|---|
Otros Autores: | |
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
London :
IWA Publishing
2024.
|
Edición: | 1st ed |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009811295006719 |
Tabla de Contenidos:
- Intro
- Cover
- Contents
- Foreword
- Contributors
- About the editors
- Chapter 1: Feedwater Quality Guidelines and Assessment Methods for Membrane-based Desalination
- 1.1 INTRODUCTION
- 1.2 PARTICULATE FOULING POTENTIAL
- 1.3 INORGANIC FOULING AND SCALING POTENTIAL
- 1.4 ORGANIC FOULING POTENTIAL
- 1.4.1 Organic carbon
- 1.4.2 UV absorbance and fluorescence
- 1.4.3 LC-OCD
- 1.4.4 TEP
- 1.4.5 Oil and grease
- 1.5 BIOFOULING POTENTIAL
- 1.5.1 Bacterial growth potential
- 1.5.2 Assimilable organic carbon
- 1.5.3 Biodegradable dissolved organic carbon
- 1.5.4 Phosphate
- 1.6 OUTLOOK AND OPPORTUNITIES
- 1.7 ABBREVIATIONS AND SYMBOLS
- 1.8 REFERENCES
- Part 1: Membrane processes
- Chapter 2: Microfiltration and ultrafiltration
- 2.1 INTRODUCTION
- 2.1.1 Advantages of ultrafiltration compared to conventional treatment
- 2.2 DESIGN AND OPTIMIZE MEMBRANE PROCESSES
- 2.3 OBJECTIVE OF THE FILTRATION PROCESS
- 2.4 MEMBRANE TYPES
- 2.5 BASIC EQUATIONS
- 2.6 NORMALIZATION
- 2.7 MEMBRANE FOULING
- 2.8 SUSTAINABLE FLUX
- 2.9 MEMBRANE DESIGN AND MODULE
- 2.10 PRETREATMENT
- 2.11 CLEANINGS
- 2.11.1 Optimization of hydraulic cleaning
- 2.12 MEMBRANE CASCADES
- 2.13 SUMMARY
- 2.14 REFERENCES
- Chapter 3: Reverse Osmosis and Nanofiltration
- 3.1 THE RISE OF REVERSE OSMOSIS
- 3.2 SUSTAINAIBLITY OF REVERSE OSMOSIS
- 3.3 UNDERSTANDING THE OSMOSIS PROCESS
- 3.3.1 Semi-permeable membranes
- 3.3.2 The reverse osmosis process
- 3.4 EQUATIONS
- 3.4.1 Fundamental equations
- 3.4.1.1 Osmotic pressure
- 3.4.1.2 Water flux
- 3.4.1.3 Salt transport
- 3.4.1.4 The difference between convective and concentration driven flows
- 3.4.2 System equations
- 3.4.3 Factors affecting membrane performance
- 3.4.3.1 Feed pressure
- 3.4.3.2 Feed concentration
- 3.4.3.3 Feed temperature
- 3.4.3.4 Concentration polarization.
- 3.5 REVERSE OSMOSIS MEMBRANES
- 3.5.1 The significance of desalination
- 3.6 PERFORMANCE MONITORING
- 3.7 NORMALIZATION
- 3.7.1 Why normalization matters
- 3.7.2 Equations
- 3.7.2.1 Normalized permeate flow
- 3.7.2.2 Normalized salt rejection
- 3.7.2.3 Normalized pressure drop
- 3.8 FOULING
- 3.8.1 Biofouling
- 3.8.2 Organic fouling
- 3.8.3 Particulate fouling
- 3.8.4 Scaling
- 3.8.5 Integrity failure
- 3.9 REFERENCES
- Chapter 4: Forward Osmosis
- 4.1 INTRODUCTION: PRINCIPLES OF FORWARD OSMOSIS
- 4.2 MATERIALS AND EXPERIMENTAL SET-UP
- 4.2.1 Membrane configurations
- 4.2.2 Experimental modes
- 4.2.3 Draw solutions: properties, regeneration, types and selection criteria
- 4.3 EXPERIMENTAL METHODS
- 4.3.1. Typical parameters and phenomena
- 4.3.2 FO process design constraints and considerations
- 4.3.3 Best practices Transmembrane Pressure (TMP)
- 4.4 DATA ANALYSIS: BASIC FO PROCESS DESIGN
- 4.4.1 FO Fundamental Equations
- 4.4.2 FO Module Mass Balance
- 4.4.3 FO Design Considerations
- 4.5 APPLICATION EXAMPLES
- 4.6 OUTLOOK
- 4.7 REFERENCES
- Chapter 5: Membrane Distillation
- 5.1 INTRODUCTION
- 5.2 MATERIALS, EXPERIMENTAL SET-UP
- 5.2.1 MD membranes
- 5.2.1.1 Membrane properties
- 5.2.1.2 Membrane materials
- 5.2.2 Experimental set-up
- 5.2.2.1 MD confi gurations
- 5.2.3 Process
- 5.2.3.1 MD system
- 5.2.3.2 Operating parameters
- 5.2.4 MD modules
- 5.3 METHODS
- 5.3.1 Process measurements and calculations
- 5.3.1.1 Permeate flux
- 5.3.1.2 Solute rejection
- 5.3.1.3 Logarithmic temperature difference
- 5.3.2 Membrane characterization
- 5.3.2.1 Physical and morphology properties
- 5.3.2.2 Chemical properties (a) Elemental composition
- 5.3.2.3 Thermal properties (a) Thermal conductivity
- 5.5 OUTLOOK
- 5.6 REFERENCES
- Part 2: Particulate fouling
- Chapter 6: Silt Density Index
- 6.0 ABSTRACT.
- 6.1 DEVELOPMENT OF THE FOULING INDEX
- 6.2 SILT AS A COMPONENT OF MEMBRANE FOULING
- 6.3 STANDARDIZATON OF THE SILT DENSITY INDEX
- 6.4 METHODS AND PROCEDURES
- 6.5 LIMITATIONS OF THE SDI
- 6.6 ALTERNATIVES TO THE SDI
- 6.7 SUMMARY
- 6.8 REFERENCES
- Chapter 7: Modified Fouling Index (MFI-0.45)
- 7.1 INTRODUCTION
- 7.2 THEORY PARTICULATE FOULING
- 7.3 MEASURING MFI-0.45
- 7.3.1 Filtration set-up and materials
- 7.3.1.1 Membrane filters
- 7.3.1.2 Filter holder
- 7.3.1.3 Feedwater reservoir
- 7.3.1.4 Electronic mass balance
- 7.3.1.5 Software for data acquisition
- 7.3.1.6 Pressure regulator and gauge
- 7.3.1.7 Pressure transducer
- 7.3.1.8 Non-plugging water
- 7.3.2 MFI-0.45 testing procedure
- 7.3.3 MFI-0.45 calculation procedure
- 7.4 MEMBRANE PROPERTIES OF COMMERCIAL MEMBRANES
- 7.5 EFFECT OF FILTER MATERIAL ON MFI-0.45
- 7.5.1 Effect of membrane support holder
- 7.6 APPLICATION: WATER QUALITY MONITORING OF NORTH SEA WATER
- 7.7 MONITORING OF MFI-0.45 IN A FULL-SCALE DESALINATION PLANT
- 7.8 REFERENCES
- Chapter 8: Modified Fouling Index Ultrafiltration (MFI-UF) Constant Flux
- 8.1 INTRODUCTION
- 8.2 THEORY PARTICULATE FOULING
- 8.2.1 Deposition factor
- 8.2.2 The particulate fouling prediction model
- 8.3 MEASURING MFI-UF CONSTANT FLUX
- 8.3.1 Filtration set-up and materials
- 8.3.1.1 Membrane filters
- 8.3.1.2 Constant flow pump
- 8.3.1.4 Membrane filter holder
- 8.3.1.5 Syringe
- 8.3.1.6 Ultra-pure water
- 8.3.1.7 Tubing
- 8.3.1.8 Software
- 8.3.2 Membrane cleaning and conditioning
- 8.3.3 MFI-UF testing procedure
- 8.3.3.1 Selection of filtration flux rate
- 8.3.4 Calculation procedure
- 8.3.4.1 Example of membrane resistance calculation of UPW
- 8.3.4.2 Example of MFI-UF calculation
- 8.3.5 Reproducibility
- 8.3.6 Blank and limit of detection
- 8.3.7 Sample storage.
- 8.3.8 Concentration of particles
- 8.3.9 Membrane material
- 8.4 VARIABLES AND APPLICATIONS OF THE MFI-UF
- 8.4.1 Plant profiling and water quality monitoring
- 8.4.2 Flux rate
- 8.4.3 Predicting rate of fouling of seawater RO systems
- 8.4.4 Comparing fouling indices
- 8.5 REFERENCES
- Part 3: Inorganic fouling and scaling
- Chapter 9: Inorganic Fouling: Characterization Tools and Mitigation
- 9.1 INTRODUCTION
- 9.2 MAIN COMPONENTS OF INORGANIC FOULING
- 9.2.1 Colloidal matter/particulate
- 9.2.2 Metals
- 9.2.3 Scaling
- 9.2.4 OTHER COMPONENTS
- 9.3 METHODS FOR INORGANIC FOULING IDENTIFICATION
- 9.4 METHODS FOR INORGANIC FOULING REMOVAL
- 9.5 REFERENCES
- Chapter 10: Assessing Scaling Potential with Induction Time and a Once-through Laboratory Scale RO System
- 10.1 INTRODUCTION
- 10.2 INDUCTION TIME MEASUREMENTS
- 10.2.1 Experimental setup
- 10.2.1.1 Glass reactor
- 10.2.1.3 pH meter
- 10.2.1.4 Peristaltic pump
- 10.2.1.5 Thermostat
- 10.2.2 Experimental procedure
- 10.2.2.1 Preparation of artificial brackish water
- 10.2.2.2 Induction time measurement
- 10.2.3 Calculation of induction time
- 10.2.4 Cleaning of the reactor
- 10.2.5 Example of application of induction time
- 10.3 ONCE THROUGH LAB-SCALE RO SYSTEM
- 10.3.1 Experimental set-up
- 10.3.2 Experimental protocol
- 10.3.3 Example of application
- 10.4 OUTLOOK AND FINAL COMMENTS
- 10.5 REFERENCES
- Part 4: Organic fouling
- Chapter 11: Practical Considerations of Using LC-OCD for Organic Matter Analysis in Seawater
- 11.1 INTRODUCTION
- 11.2 LC-OCD ANALYSIS
- 11.2.1 Instrumentation and chromatogram integration
- 11.2.2 Effect of salinity on organic characterization and calibration
- 11.2.3 LEVEL OF DETECTION
- 11.2.4 REPRODUCIBILITY OF LC-OCD
- 11.2.5 CHARACTERISATION OF ORGANIC MIXTURES
- 11.2.6 Applications.
- 11.2.6.1 OM composition in seawater
- 11.2.6.2 Fouling behaviour of organic matter
- 11.2.6.3 Effectiveness of pretreatment methods
- 11.3 CONCLUSIONS
- 11.4 REFERENCES
- Chapter 12: Fluorescence Excitation Emission Matrix (EEM) Spectroscopy
- 12.1 INTRODUCTION
- 12.2 SAMPLING &
- STORAGE
- 12.3 BENCHTOP INSTRUMENTATION
- 12.4 QUALITY ASSURANCE
- 12.5 INTERFERENCES
- 12.6 DATA PROCESSING
- 12.7 DATA ANALYSIS
- 12.7.1 PARAFAC
- 12.8 APPLICATION IN MEMBRANE SYSTEMS
- 12.9 REFERENCES
- Chapter 13: Transparent Exopolymer Particles
- 13.1 INTRODUCTION
- 13.2 QUANTIFICATION METHODS
- 13.2.1 Alcian blue dye preparation
- 13.2.2 TEP0.4µm measurement
- 13.2.3 TEP10kDa measurement
- 13.2.4 Method calibration
- 13.2.4.1 Xanthan gum standard preparation
- 13.2.4.2 TEP0.4µm calibration
- 13.2.4.3 TEP0.4µm calibration
- 13.2.4.4 TEP10kDa calibration
- 13.2.5 Other considerations
- 13.2.5.1 Limit of detection
- 13.2.5.2 Impact of storage on TEP concentration
- 13.2.6 Application and interpretation
- 13.3 SUMMARY AND OUTLOOK
- 13.4 REFERENCES
- Part 5: Biological fouling
- Chapter 14: Genomics Tools to Study Membrane-Based Systems
- 14.1 INTRODUCTION
- 14.2 EXPERIMENTAL DESIGN AND SAMPLE PREPARATION
- 14.2.1 Experimental Design in a Metagenomics
- 14.2.2 Sample Collection and Preservation
- 14.2.3 DNA Extraction
- 14.2.4 Library Preparation
- 14.2.5 Sequencing platforms
- 14.3 BIOINFORMATICS ANALYSIS
- 14.3.1 Data Pre-treatment
- 14.3.2 Amplicon-based approach
- 14.3.3 Metagenomics, read-based approach
- 14.3.4 Metagenomics, assembly-based approach
- 14.3.5 Metagenome-assembled Genome (MAG) Binning
- 14.3.6 Supervised and unsupervised binning
- 14.3.7 Functional annotation
- 14.3.8 Genome-resolved Metatranscriptomics
- 14.4 DATA SHARING AND STORAGE
- 14.5 BIOINFORMATICS ANALYSIS WORKFLOW EXAMPLES.
- 14.5.1 Amplicon Sequences Processing Workflow.