Dancing with Qubits From Qubits to Algorithms, Embark on the Quantum Computing Journey Shaping Our Future

Dancing with Qubits, Second Edition, is a comprehensive quantum computing textbook that starts with an overview of why quantum computing is so different from classical computing and describes several industry use cases where it can have a major impact. A full description of classical computing and t...

Descripción completa

Detalles Bibliográficos
Autor principal: Sutor, Robert S. (-)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, Limited 2024.
Edición:2nd ed
Colección:Expert insight.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009810645006719
Tabla de Contenidos:
  • Intro
  • Copyright
  • Contributors
  • Contents
  • Preface
  • I Foundations
  • 1 Why Quantum Computing
  • 1.1 The mysterious quantum bit
  • 1.2 I'm awake!
  • 1.3 Why quantum computing is different
  • 1.4 Applications to artificial intelligence
  • 1.5 Applications to financial services
  • 1.6 What about cryptography?
  • 1.7 Summary
  • 2 They're Not Old, They're Classics
  • 2.1 What's inside a computer?
  • 2.2 The power of two
  • 2.3 True or false?
  • 2.4 Logic circuits
  • 2.5 Addition, logically
  • 2.6 Algorithmically speaking
  • 2.7 Growth, exponential and otherwise
  • 2.8 How hard can that be?
  • 2.9 Summary
  • 3 More Numbers Than You Can Imagine
  • 3.1 Natural numbers
  • 3.2 Whole numbers
  • 3.3 Integers
  • 3.4 Rational numbers
  • 3.5 Real numbers
  • 3.6 Structure
  • 3.7 Modular arithmetic
  • 3.8 Doubling down
  • 3.9 Complex numbers, algebraically
  • 3.10 Summary
  • 4 Planes and Circles and Spheres, Oh My
  • 4.1 Functions
  • 4.2 The real plane
  • 4.3 Trigonometry
  • 4.4 From Cartesian to polar coordinates
  • 4.5 The complex ``plane''
  • 4.6 Real three dimensions
  • 4.7 Summary
  • 5 Dimensions
  • 5.1 R2 and C1
  • 5.2 Vector spaces
  • 5.3 Linear maps
  • 5.4 Matrices
  • 5.5 Matrix algebra
  • 5.6 The determinant and trace
  • 5.7 Length and preserving it
  • 5.8 Unitary transformations
  • 5.9 Change of basis
  • 5.10 Eigenvectors and eigenvalues
  • 5.11 Direct sums
  • 5.12 Homomorphisms
  • 5.13 Systems of linear equations
  • 5.14 Summary
  • 6 What Do You Mean ``Probably''?
  • 6.1 Being discrete
  • 6.2 More formally
  • 6.3 Wrong again?
  • 6.4 Probability and error detection
  • 6.5 Randomness
  • 6.6 Expectation
  • 6.7 Hellinger distance
  • 6.8 Markov and Chebyshev go to the casino
  • 6.9 Summary
  • II Quantum Computing
  • 7 One Qubit
  • 7.1 Introducing quantum bits
  • 7.2 Bras and kets
  • 7.3 The complex math and physics of a single qubit.
  • 7.4 A nonlinear projection
  • 7.5 The Bloch sphere
  • 7.6 Professor Hadamard, meet Professor Pauli
  • 7.7 Gates and unitary matrices
  • 7.8 Summary
  • 8 Two Qubits, Three
  • 8.1 Tensor products
  • 8.2 Entanglement
  • 8.3 Multi-qubit gates
  • 8.4 The cat
  • 8.5 Summary
  • 9 Wiring Up the Circuits
  • 9.1 So many gates
  • 9.2 From gates to circuits
  • 9.3 Building blocks and universality
  • 9.4 Arithmetic
  • 9.5 Welcome to Delphi
  • 9.6 Amplitude amplification and interference
  • 9.7 Searching with Grover
  • 9.8 The Deutsch-Jozsa algorithm
  • 9.9 The Bernstein-Vazirani algorithm
  • 9.10 Simon's algorithm
  • 9.11 Summary
  • 10 From Circuits to Algorithms
  • 10.1 Quantum Fourier Transform
  • 10.2 Factoring
  • 10.3 How hard can that be, again?
  • 10.4 Phase kickback
  • 10.5 Eigenvalue and phase estimation
  • 10.6 Order and period finding
  • 10.7 Shor's factoring algorithm
  • 10.8 Summary
  • 11 Getting Physical
  • 11.1 That's not logical
  • 11.2 What does it take to be a qubit?
  • 11.3 Quantum cores and interconnects
  • 11.4 Decoherence
  • 11.5 Error correction for physical qubits
  • 11.6 Quantum benchmarks
  • 11.7 The software stack and access
  • 11.8 Simulation
  • 11.9 Light and photons
  • 11.10 Summary
  • III Advanced Topics
  • 12 Considering NISQ Algorithms
  • 12.1 Cost functions and optimization
  • 12.2 Heuristics
  • 12.3 Hermitian matrices again
  • 12.4 Expectation and the variational principle
  • 12.5 Time evolution
  • 12.6 Parameterized circuits
  • 12.7 The Hamiltonian
  • 12.8 Quantum approximate optimization algorithm (QAOA)
  • 12.9 Is NISQ worth it?
  • 12.10 Summary
  • 13 Introduction to Quantum Machine Learning
  • 13.1 What is machine learning?
  • 13.2 Methods for encoding data
  • 13.3 Quantum neural networks
  • 13.4 Quantum kernels for SVMs
  • 13.5 Other quantum machine learning research areas
  • 13.6 Summary
  • 14 Questions about the Future.
  • 14.1 Ecosystem and community
  • 14.2 Applications and strategy
  • 14.3 Computing system access
  • 14.4 Software
  • 14.5 Hardware
  • 14.6 Education
  • 14.7 Workforce
  • 14.8 Summary
  • Afterword
  • Appendices
  • A Quick Reference
  • A.1 One qubit kets
  • A.2 Two qubit kets
  • A.3 Pauli gates and matrices
  • A.4 Pauli strings of length 2
  • A.5 Greek letters
  • B Notices
  • B.1 Photos, images, and diagrams
  • B.2 Marks
  • B.3 Creative Commons Attribution-NoDerivs 2.0 Generic
  • B.4 Creative Commons Attribution-ShareAlike 2.0 Germany
  • B.5 Creative Commons Attribution 3.0 Unported
  • B.6 Creative Commons Attribution-ShareAlike 3.0 Unported
  • B.7 Los Alamos National Laboratory
  • B.8 Python 3 license
  • C Production Notes
  • C.1 How this book was built
  • C.2 Citing this book
  • C.3 Python version
  • C.4 LaTeX environment
  • Other Books You May Enjoy
  • References
  • Index
  • Share your thoughts
  • Download a free PDF copy of this book
  • Other Books You May Enjoy
  • Index
  • Blank Page.