Smart Embedded Systems Advances and Applications

Detalles Bibliográficos
Otros Autores: Sinha, Arun Kumar, editor (editor)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Boca Raton, FL : CRC Press [2024]
Edición:First edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009809018306719
Tabla de Contenidos:
  • Cover
  • Half Title
  • Title Page
  • Copyright Page
  • Table of Contents
  • Preface
  • Editors
  • Contributors
  • Chapter 1: A reconfigurable FPGA-based epileptic seizures detection system with 144 μs detection time
  • 1.1 Introduction
  • 1.2 Software-based implementation
  • 1.2.1 EEG data
  • 1.2.2 Segmentation
  • 1.2.3 Feature extraction
  • 1.2.4 RF algorithm
  • 1.3 Hardware-based implementation
  • 1.3.1 Feature extraction
  • 1.3.2 RF training module
  • 1.3.3 The RF inference module
  • 1.3.4 Display label
  • 1.4 Experimental results
  • 1.4.1 Software implementation results
  • 1.4.2 FPGA implementation results
  • 1.5 Conclusion
  • Acknowledgment
  • References
  • Chapter 2: Hardware architecture for denoising of EOG signal using a differential evolution algorithm
  • 2.1 Introduction
  • 2.2 FIR filter architecture
  • 2.3 Filter design for denoising of EOG signal using DE algorithm
  • 2.4 DE algorithm with minimized coefficients
  • 2.5 Functional verification of DE with minimized coefficient (DEWMC)-based denoised FIR filter
  • 2.6 Synthesis results
  • 2.7 Conclusion
  • References
  • Chapter 3: Implementation considerations for an intelligent embedded E-health system and experimental results for EEG-based activity recognition
  • 3.1 Introduction
  • 3.2 Embedded acquisition system for E-health
  • 3.2.1 Hardware considerations, choices, and implementations
  • 3.2.2 Software architecture and implementation
  • 3.2.3 Related works
  • 3.3 EEG-based classification of motor imagery activities
  • 3.3.1 Segmentation
  • 3.3.2 Neural network efficiency investigation
  • 3.4 Conclusion
  • References
  • Chapter 4: Embedded and computational intelligence for diabetic healthcare: An overview
  • 4.1 Introduction
  • 4.2 Embedded intelligence glucose monitoring
  • 4.2.1 BioSensors
  • 4.2.2 Implanted micro systems
  • 4.2.3 Wearable sensors.
  • 4.2.3.1 Wearable interstitial fluid (ISF) CGM
  • 4.2.3.2 Wearable sweat CGM
  • 4.2.3.3 Wearable tear CGM
  • 4.2.3.4 Wearable saliva CGM
  • 4.3 Computational intelligence in glucose monitoring
  • 4.3.1 Machine learning
  • 4.3.2 Recommender systems
  • 4.3.3 Mobile and WebApp
  • 4.3.4 TeleMedicine
  • 4.3.5 Auto-administer therapy
  • 4.4 Conclusion and future scope
  • References
  • Chapter 5: A semi-definite programming-based design of a robust depth control for a submersible autonomous robot through state feedback control
  • 5.1 Introduction
  • 5.2 Modeling of SAR in depth plane
  • 5.2.1 Problem statement
  • 5.3 Design of robust optimal control
  • 5.3.1 Robust optimal state feedback for polytopic SAR system
  • 5.3.1.1 Preliminaries: LMI-based LQR controller
  • 5.3.1.2 Robust LMI-based optimal controller
  • 5.4 Results and discussion
  • 5.5 Conclusion
  • Acknowledgments
  • References
  • Chapter 6: Embedded system with in-memory compute neuromorphic accelerator for multiple applications
  • 6.1 Introduction
  • 6.2 Accelerator for in-memory compute applications
  • 6.2.1 Background
  • 6.2.2 Design and implementation of standard 32×40×10 in-memory compute architecture
  • 6.2.2.1 Working principle
  • 6.2.3 Potential benefits of the accelerator in various applications
  • 6.3 In-memory compute accelerator: An embedded system perspective for multiple applications
  • 6.3.1 Climate technology
  • 6.3.2 Social sciences
  • 6.3.3 Medical sciences
  • 6.3.4 Finance technology
  • 6.3.5 Gaming technology (GT)
  • 6.4 Results and discussion
  • 6.4.1 Parametric analysis of ideal resistive memory and swish activation function
  • 6.4.2 Inference analysis for the in-memory compute accelerator
  • 6.4.3 Training analysis for the in-memory compute accelerator
  • 6.5 Conclusion
  • References.
  • Chapter 7: Artificial intelligence-driven radio channel capacity in 5G and 6G wireless communication systems in the presence of vegetation: Prospect and challenges
  • 7.1 Introduction
  • 7.2 Radio wave attenuation due to vegetation
  • 7.3 Embedded architecture: AI-DR vegetation attenuation prediction system
  • 7.4 SCC prediction
  • 7.5 Conclusions
  • Acknowledgments
  • References
  • Chapter 8: Smart cabin for office using embedded systems and sensors
  • 8.1 Introduction
  • 8.1.1 Smart office
  • 8.1.2 Motivation
  • 8.1.3 Objectives
  • 8.2 Cabin security
  • 8.2.1 Fingerprint verification
  • 8.2.2 Face verification
  • 8.2.3 Speech verification
  • 8.3 Ambiance monitor
  • 8.3.1 Temperature and relative humidity
  • 8.3.2 Carbon dioxide
  • 8.3.3 Total volatile organic compound (TVOC)
  • 8.3.4 Air pressure
  • 8.3.5 Dust level
  • 8.4 Well-being monitor
  • 8.4.1 Physical health
  • 8.4.2 Mental health
  • 8.4.2.1 Fatigue state
  • 8.4.2.2 Emotional state
  • 8.5 Data transmission and display
  • 8.6 Results
  • 8.7 Conclusion
  • Acknowledgments
  • References
  • Chapter 9: Wireless protocols for swarm of sensors: Sigfox, Lorawan, and Nb-IoT
  • 9.1 Introduction
  • 9.1.1 Basic communication infrastructure
  • 9.2 Sigfox
  • 9.2.1 Overview
  • 9.2.2 Regions of operation
  • 9.2.3 Technical characteristics
  • 9.2.4 Sigfox diversity
  • 9.2.5 Network architecture
  • 9.2.6 Message system
  • 9.2.7 Summary of characteristics
  • 9.3 Lorawan
  • 9.3.1 Overview
  • 9.3.2 Characteristics
  • 9.3.3 Uplink and downlink communication
  • 9.3.4 Classes of operation
  • 9.3.5 Network architecture
  • 9.3.6 Message system
  • 9.3.7 Characteristics summary
  • 9.4 Nb-IoT
  • 9.4.1 Overview
  • 9.4.2 Characteristics
  • 9.4.3 Message system
  • 9.5 Conclusion
  • References
  • Chapter 10: Design and test of thermal energy harvester for self-powered autonomous electronic load
  • 10.1 Introduction.
  • 10.1.1 Calculation of the maximum power conversion efficiency
  • 10.2 Low-voltage starter
  • 10.2.1 Enhanced swing ring oscillator
  • 10.2.2 Dickson charge pump
  • 10.2.3 AC model of ESRO
  • 10.2.4 Important formulas for the LVS block
  • 10.3 Power equations for convertor operating in DCM
  • 10.3.1 Boost convertor
  • 10.3.2 Maximum extraction of power from a low-voltage source V TEG
  • 10.3.3 Sizing auxiliary and main stage inductors
  • 10.4 Peripheral circuits
  • 10.4.1 Current starved ring oscillator
  • 10.4.2 Reference generator and node sensing network
  • 10.4.3 Zero current switching network
  • 10.4.4 Control logic
  • 10.5 Test and measurement
  • 10.5.1 Inductors for ESRO coupled with DCP
  • 10.6 Conclusion
  • Acknowledgments
  • References
  • Chapter 11: Managing concept drift in IoT health data streams: A dynamic adaptive weighted ensemble approach
  • 11.1 Introduction
  • 11.1.1 Concept of drift
  • 11.1.2 Significance of adaptive learning in IoT with machine learning for health data
  • 11.2 Literature survey
  • 11.2.1 Drift phenomenon
  • 11.2.2 Adaptive learning models towards IoT
  • 11.3 Methodology
  • 11.3.1 Dataset description
  • 11.3.2 Data preprocessing
  • 11.3.3 Implementation of DAWE
  • 11.3.3.1 Base learners
  • 11.3.3.2 Proposed ensemble strategy for DAWE
  • 11.4 Experimental results
  • 11.5 Discussion and future scope
  • 11.6 Conclusions
  • Acknowledgments
  • References
  • Chapter 12: GraLSTM: A distributed learning model for efficient IoT resource allocation in healthcare
  • 12.1 Introduction
  • 12.1.1 How is IoT useful for the healthcare sector?
  • 12.1.2 Open discussion and challenges in IoT- AI with EHR
  • 12.1.3 Recent trends in IoT health with AI
  • 12.2 Literature survey
  • 12.2.1 IoT towards decision-making
  • 12.2.2 Paradigm shift in anomaly detection
  • 12.2.3 Resource allocation with parallelization and distributed learning.
  • 12.3 Methodology
  • 12.3.1 Dataset description
  • 12.3.2 Structured graph for anomaly detection
  • 12.3.3 GraLSTM model
  • 12.3.4 GraLSTM-IoT resource allocation
  • 12.4 Experimental results
  • 12.5 Conclusion
  • Acknowledgments
  • References
  • Index.