Bayesian analysis with Python a practical guide to probabilistic modeling

The third edition of Bayesian Analysis with Python serves as an introduction to the main concepts of applied Bayesian modeling using PyMC, a state-of-the-art probabilistic programming library, and other libraries that support and facilitate modeling like ArviZ, for exploratory analysis of Bayesian m...

Descripción completa

Detalles Bibliográficos
Otros Autores: Martin, Osvaldo, author (author), Fonnesbeck, Christopher (-), Wiecki, Thomas
Formato: Libro electrónico
Idioma:Inglés
Publicado: Birmingham, England : Packt Publishing January 2024
Edición:Third edition
Colección:Expert insight
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009805128606719
Tabla de Contenidos:
  • Cover
  • Copyright
  • Foreword
  • Contributors
  • Table of Contents
  • Preface
  • Who this book is for
  • What this book covers
  • What's new in this edition?
  • Installation instructions
  • Conventions used
  • Chapter 1: Thinking Probabilistically
  • Statistics, models, and this book's approach
  • Working with data
  • Bayesian modeling
  • A probability primer for Bayesian practitioners
  • Sample space and events
  • Random variables
  • Discrete random variables and their distributions
  • Continuous random variables and their distributions
  • Cumulative distribution function
  • Conditional probability
  • Expected values
  • Bayes' theorem
  • Interpreting probabilities
  • Probabilities, uncertainty, and logic
  • Single-parameter inference
  • The coin-flipping problem
  • Choosing the likelihood
  • Choosing the prior
  • Getting the posterior
  • The influence of the prior
  • How to choose priors
  • Communicating a Bayesian analysis
  • Model notation and visualization
  • Summarizing the posterior
  • Summary
  • Exercises
  • Chapter 2: Programming Probabilistically
  • Probabilistic programming
  • Flipping coins the PyMC way
  • Summarizing the posterior
  • Posterior-based decisions
  • Savage-Dickey density ratio
  • Region Of Practical Equivalence
  • Loss functions
  • Gaussians all the way down
  • Gaussian inferences
  • Posterior predictive checks
  • Robust inferences
  • Degrees of normality
  • A robust version of the Normal model
  • InferenceData
  • Groups comparison
  • The tips dataset
  • Cohen's d
  • Probability of superiority
  • Posterior analysis of mean differences
  • Summary
  • Exercises
  • Chapter 3: Hierarchical Models
  • Sharing information, sharing priors
  • Hierarchical shifts
  • Water quality
  • Shrinkage
  • Hierarchies all the way up
  • Summary
  • Exercises
  • Chapter 4: Modeling with Lines
  • Simple linear regression
  • Linear bikes.
  • Interpreting the posterior mean
  • Interpreting the posterior predictions
  • Generalizing the linear model
  • Counting bikes
  • Robust regression
  • Logistic regression
  • The logistic model
  • Classification with logistic regression
  • Interpreting the coefficients of logistic regression
  • Variable variance
  • Hierarchical linear regression
  • Centered vs. noncentered hierarchical models
  • Multiple linear regression
  • Summary
  • Exercises
  • Chapter 5: Comparing Models
  • Posterior predictive checks
  • The balance between simplicity and accuracy
  • Many parameters (may) lead to overfitting
  • Too few parameters lead to underfitting
  • Measures of predictive accuracy
  • Information criteria
  • Akaike Information Criterion
  • Widely applicable information criteria
  • Other information criteria
  • Cross-validation
  • Approximating cross-validation
  • Calculating predictive accuracy with ArviZ
  • Model averaging
  • Bayes factors
  • Some observations
  • Calculation of Bayes factors
  • Analytically
  • Sequential Monte Carlo
  • Savage-Dickey ratio
  • Bayes factors and inference
  • Regularizing priors
  • Summary
  • Exercises
  • Chapter 6: Modeling with Bambi
  • One syntax to rule them all
  • The bikes model, Bambi's version
  • Polynomial regression
  • Splines
  • Distributional models
  • Categorical predictors
  • Categorical penguins
  • Relation to hierarchical models
  • Interactions
  • Interpreting models with Bambi
  • Variable selection
  • Projection predictive inference
  • Projection predictive with Kulprit
  • Summary
  • Exercises
  • Chapter 7: Mixture Models
  • Understanding mixture models
  • Finite mixture models
  • The Categorical distribution
  • The Dirichlet distribution
  • Chemical mixture
  • The non-identifiability of mixture models
  • How to choose K
  • Zero-Inflated and hurdle models
  • Zero-Inflated Poisson regression
  • Hurdle models.
  • Mixture models and clustering
  • Non-finite mixture model
  • Dirichlet process
  • Continuous mixtures
  • Some common distributions are mixtures
  • Summary
  • Exercises
  • Chapter 8: Gaussian Processes
  • Linear models and non-linear data
  • Modeling functions
  • Multivariate Gaussians and functions
  • Covariance functions and kernels
  • Gaussian processes
  • Gaussian process regression
  • Gaussian process regression with PyMC
  • Setting priors for the length scale
  • Gaussian process classification
  • GPs for space flu
  • Cox processes
  • Coal mining disasters
  • Red wood
  • Regression with spatial autocorrelation
  • Hilbert space GPs
  • HSGP with Bambi
  • Summary
  • Exercises
  • Chapter 9: Bayesian Additive Regression Trees
  • Decision trees
  • BART models
  • Bartian penguins
  • Partial dependence plots
  • Individual conditional plots
  • Variable selection with BART
  • Distributional BART models
  • Constant and linear response
  • Choosing the number of trees
  • Summary
  • Exercises
  • Chapter 10: Inference Engines
  • Inference engines
  • The grid method
  • Quadratic method
  • Markovian methods
  • Monte Carlo
  • Markov chain
  • Metropolis-Hastings
  • Hamiltonian Monte Carlo
  • Sequential Monte Carlo
  • Diagnosing the samples
  • Convergence
  • Trace plot
  • Rank plot
  • , (R hat)
  • Effective Sample Size (ESS)
  • Monte Carlo standard error
  • Divergences
  • Keep calm and keep trying
  • Summary
  • Exercises
  • Chapter 11: Where to Go Next
  • Other Books You May Enjoy
  • Index.