Development of a System for Fast Identification and Characterization of Biological Cells

Bio Impedance Spectroscopy (BIS) consists in the application of a small frequency variable electrical signal to a biological material and measuring its response. This research explores BIS applied to cancer and healthy cells and tissues, with the objective to try to distinguish them and also to expl...

Descripción completa

Detalles Bibliográficos
Autor principal: Teixeira, Viviane Silva (-)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Berlin : Logos Verlag Berlin 2024.
Edición:First edition
Colección:Wissenschaftliche Beiträge Zur Medizinelektronik Series ; v.11.
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009799928406719
Tabla de Contenidos:
  • Intro
  • Abstract
  • Acknowledgements
  • Contents
  • List of Figures
  • List of Tables
  • Glossary
  • List of Symbols
  • 1 Introduction
  • 1.1 Purpose of the Work
  • 1.2 Thesis Outline
  • 1.3 Contributions
  • 1.4 List of Publications
  • 2 Theoretical Background
  • 2.1 Biological Cells
  • 2.1.1 The Eukaryotic Cell
  • 2.1.2 Cellular Membrane
  • 2.2 Electrical Properties of Biological Systems
  • 2.3 Electrical Impedance Spectroscopy
  • 2.3.1 Mathematical Concept of Impedance
  • 2.3.2 Graphical Representation of Impedance Data
  • 2.3.3 Electrical and Electrochemical Circuit Elements
  • 2.3.4 Conditions for Valid EIS Data
  • 3 Development of a Four Electrode Terminal Chamber System
  • 3.1 Electrode Polarization in Low Frequencies
  • 3.1.1 Interfacial Capacitance
  • 3.1.2 Charge Transfer Resistance
  • 3.1.3 Warburg Impedance for Diffusion Modelling
  • 3.1.4 Solution Resistance
  • 3.1.5 Equivalent Circuit of Electrode-Electrolyte Interface
  • 3.2 Measurement Systems and Electrodes Setup
  • 3.2.1 Two-Electrode Measurement System
  • 3.2.2 Three-Terminal Measurement System
  • 3.2.3 Four-Terminal Measurement System
  • 3.3 Detailed ECM of the Experimental Setup
  • 3.4 Designed System
  • 3.5 Comparison 4T vs. 2T Measurements
  • 3.6 Source of Artifacts in Low Frequency Impedance Experiments
  • 4 Applying EIS to Cancer Cells Suspensions
  • 4.1 Introduction
  • 4.1.1 Normal Cell Lines
  • 4.1.2 Prostate Cancer Cell Lines
  • 4.1.3 Leukemia Cell Lines
  • 4.1.4 Colon Cancer Cell Lines
  • 4.1.5 Breast Cancer Cell Lines
  • 4.2 Experimental Procedure
  • 4.3 Experimental Results
  • 4.3.1 Impedance Magnitude and Phase Curves Using the 320 μL Chamber
  • 4.3.2 Metastatic versus Non-Metastatic Cancers
  • 4.3.3 Comparison of the Impedance Spectrum from Different Cell Lines
  • 4.3.4 Cell Sizes
  • 4.4 Suggestions for Future Experiments
  • 4.4.1 Use a Temperature Controlled Box.
  • 4.4.2 Measure Cells Shortly After Detachment
  • 4.4.3 Perform Only Few Experiments per Day
  • 4.4.4 Use Preferably New Electrodes
  • 4.4.5 Use Small Voltage Signals
  • 4.4.6 Do not apply a DC potential to impedance experiments
  • 4.5 Conclusions
  • 5 Measuring the Cell Surface Charge
  • 5.1 Introduction
  • 5.2 Low Frequency Dispersion of Colloidal Particles Suspended in Electrolyte Solutions
  • 5.3 Dimensional Analysis of Equation 5.7
  • 5.4 Correction of Schwarz Model to 4T Experiments
  • 5.5 Experimental Results: Calculation of the Cell Surface Charge
  • 5.6 Comments on Schwarz Theory
  • 5.7 Conclusions
  • 6 Measuring Adherent Cells
  • 6.1 Introduction
  • 6.2 Theoretical Background
  • 6.2.1 Working Principle
  • 6.2.2 Presence of the Double Layer
  • 6.2.3 Equivalent Circuit Model to Analyse the Cells Attached to Interdigitated Electrodes
  • 6.3 Experimental Procedure
  • 6.4 Experimental Results
  • 6.4.1 Cell Attachment and Growth
  • 6.4.2 Evaluating Chemotheraphy Effects
  • 6.5 Conclusions
  • 7 Spectral Response of Healthy Tissues and Solid Tumors
  • 7.1 Theoretical Background
  • 7.2 Spectral Response of Healthy Tissues
  • 7.3 Tumor Composition and Organization
  • 7.4 Main Structural Differences Between Tumor and Healthy Tissues
  • 7.5 Comparison Tumor vs. Healthy Tissues Spectral Response
  • 7.5.1 Experimental Setup
  • 7.5.2 Experimental Results
  • 7.6 Conclusions
  • 8 Conclusions and Future Work
  • 8.1 Summary and Conclusions
  • 8.2 Recommendations and Guidelines
  • 8.3 Future Work
  • A Architecture proposal of a 4T impedance measurement system
  • A.1 Macro view of the impedance measurement system
  • A.1.1 Oscillator
  • A.1.2 Potentiostat
  • A.1.3 Principles of lock-in detection
  • A.1.4 Front-end and complete system
  • A.2 Conclusions
  • B Cancer metabolites identification
  • B.1 First method: membrane system to separate different types of ions.
  • B.1.1 Step A: identify body fluids
  • B.1.2 Step B: choose one body fluid
  • B.1.3 Step C: identify metabolite chemical formula
  • B.1.4 Step E: calculate the molecular size of the metabolite
  • B.1.5 Design membrane system to separate metabolite
  • B.1.6 Conductivity measurement of different compartments
  • B.1.7 Calculate metabolite concentration
  • B.1.8 Comments about the method
  • B.2 Second method: surface modified interdigitated electrodes
  • C Extracting Δεα from impedance measurements
  • C.1 Equivalent circuit model
  • C.2 Fitting the experimental data
  • C.3 Extracting Δεα
  • C.4 Example of fitting PC-3 cells experiments to extract Δε0
  • Complete Table Cell Surface Charge
  • Bibliography.