Beginning Anomaly Detection Using Python-Based Deep Learning Implement Anomaly Detection Applications with Keras and PyTorch
This beginner-oriented book will help you understand and perform anomaly detection by learning cutting-edge machine learning and deep learning techniques. This updated second edition focuses on supervised, semi-supervised, and unsupervised approaches to anomaly detection. Over the course of the book...
Otros Autores: | , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Berkeley, CA :
Apress
2024.
|
Edición: | 2nd ed. 2024. |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009790330406719 |
Tabla de Contenidos:
- Chapter 1: Introduction to Anomaly Detection
- Chapter 2: Introduction to Data Science
- Chapter 3: Introduction to Machine Learning
- Chapter 4: Traditional Machine Learning Algorithms. -Chapter 5: Introduction to Deep Learning
- Chapter 6: Autoencoders
- Chapter 7: Generative Adversarial Networks
- Chapter 8 Long Short-Term Memory Models
- Chapter 9: Temporal Convolutional Networks
- Chapter 10: Transformers
- Chapter 11: Practical Use Cases and Future Trends of Anomaly Detection.