Official Google Cloud Certified Professional Machine Learning Engineer Study Guide

Detalles Bibliográficos
Otros Autores: Mona, Mona, author (author), Ramamurthy, Pratap, author
Formato: Libro electrónico
Idioma:Inglés
Publicado: Hoboken, New Jersey : John Wiley & Sons, Inc [2024]
Edición:First edition
Colección:SYBIDI document.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009786738506719
Tabla de Contenidos:
  • Cover Page
  • Title Page
  • Copyright Page
  • Acknowledgments
  • About the Authors
  • About the Technical Editors
  • Contents at a Glance
  • Contents
  • Introduction
  • Google Cloud Professional Machine Learning Engineer Certification
  • Why Become Professional ML Engineer (PMLE) Certified?
  • How to Become Certified
  • Who Should Buy This Book
  • How This Book Is Organized
  • Chapter Features
  • Bonus Digital Contents
  • Conventions Used in This Book
  • Google Cloud Professional ML Engineer Objective Map
  • How to Contact the Publisher
  • Chapter 1 Framing ML Problems
  • Translating Business Use Cases
  • Machine Learning Approaches
  • Supervised, Unsupervised, and Semi-supervised Learning
  • Classification, Regression, Forecasting, and Clustering
  • ML Success Metrics
  • Regression
  • Responsible AI Practices
  • Summary
  • Exam Essentials
  • Review Questions
  • Chapter 2 Exploring Data and Building Data Pipelines
  • Visualization
  • Box Plot
  • Line Plot
  • Bar Plot
  • Scatterplot
  • Statistics Fundamentals
  • Mean
  • Median
  • Mode
  • Outlier Detection
  • Standard Deviation
  • Correlation
  • Data Quality and Reliability
  • Data Skew
  • Data Cleaning
  • Scaling
  • Log Scaling
  • Z-score
  • Clipping
  • Handling Outliers
  • Establishing Data Constraints
  • Exploration and Validation at Big-Data Scale
  • Running TFDV on Google Cloud Platform
  • Organizing and Optimizing Training Datasets
  • Imbalanced Data
  • Data Splitting
  • Data Splitting Strategy for Online Systems
  • Handling Missing Data
  • Data Leakage
  • Summary
  • Exam Essentials
  • Review Questions
  • Chapter 3 Feature Engineering
  • Consistent Data Preprocessing
  • Encoding Structured Data Types
  • Mapping Numeric Values
  • Mapping Categorical Values
  • Feature Selection
  • Class Imbalance
  • Classification Threshold with Precision and Recall
  • Area under the Curve (AUC).
  • Feature Crosses
  • TensorFlow Transform
  • TensorFlow Data API (tf.data)
  • TensorFlow Transform
  • GCP Data and ETL Tools
  • Summary
  • Exam Essentials
  • Review Questions
  • Chapter 4 Choosing the Right ML Infrastructure
  • Pretrained vs. AutoML vs. Custom Models
  • Pretrained Models
  • Vision AI
  • Video AI
  • Natural Language AI
  • Translation AI
  • Speech-to-Text
  • Text-to-Speech
  • AutoML
  • AutoML for Tables or Structured Data
  • AutoML for Images and Video
  • AutoML for Text
  • Recommendations AI/Retail AI
  • Document AI
  • Dialogflow and Contact Center AI
  • Custom Training
  • How a CPU Works
  • GPU
  • TPU
  • Provisioning for Predictions
  • Scaling Behavior
  • Finding the Ideal Machine Type
  • Edge TPU
  • Deploy to Android or iOS Device
  • Summary
  • Exam Essentials
  • Review Questions
  • Chapter 5 Architecting ML Solutions
  • Designing Reliable, Scalable, and Highly Available ML Solutions
  • Choosing an Appropriate ML Service
  • Data Collection and Data Management
  • Google Cloud Storage (GCS)
  • BigQuery
  • Vertex AI Managed Datasets
  • Vertex AI Feature Store
  • NoSQL Data Store
  • Automation and Orchestration
  • Use Vertex AI Pipelines to Orchestrate the ML Workflow
  • Use Kubeflow Pipelines for Flexible Pipeline Construction
  • Use TensorFlow Extended SDK to Leverage Pre-built Components for Common Steps
  • When to Use Which Pipeline
  • Serving
  • Offline or Batch Prediction
  • Online Prediction
  • Summary
  • Exam Essentials
  • Review Questions
  • Chapter 6 Building Secure ML Pipelines
  • Building Secure ML Systems
  • Encryption at Rest
  • Encryption in Transit
  • Encryption in Use
  • Identity and Access Management
  • IAM Permissions for Vertex AI Workbench
  • Securing a Network with Vertex AI
  • Privacy Implications of Data Usage and Collection
  • Google Cloud Data Loss Prevention
  • Google Cloud Healthcare API for PHI Identification.
  • Best Practices for Removing Sensitive Data
  • Summary
  • Exam Essentials
  • Review Questions
  • Chapter 7 Model Building
  • Choice of Framework and Model Parallelism
  • Data Parallelism
  • Model Parallelism
  • Modeling Techniques
  • Artificial Neural Network
  • Deep Neural Network (DNN)
  • Convolutional Neural Network
  • Recurrent Neural Network
  • What Loss Function to Use
  • Gradient Descent
  • Learning Rate
  • Batch
  • Batch Size
  • Epoch
  • Hyperparameters
  • Transfer Learning
  • Semi-supervised Learning
  • When You Need Semi-supervised Learning
  • Limitations of SSL
  • Data Augmentation
  • Offline Augmentation
  • Online Augmentation
  • Model Generalization and Strategies to Handle Overfitting and Underfitting
  • Bias Variance Trade-Off
  • Underfitting
  • Overfitting
  • Regularization
  • Summary
  • Exam Essentials
  • Review Questions
  • Chapter 8 Model Training and Hyperparameter Tuning
  • Ingestion of Various File Types into Training
  • Collect
  • Process
  • Store and Analyze
  • Developing Models in Vertex AI Workbench by Using Common Frameworks
  • Creating a Managed Notebook
  • Exploring Managed JupyterLab Features
  • Data Integration
  • BigQuery Integration
  • Ability to Scale the Compute Up or Down
  • Git Integration for Team Collaboration
  • Schedule or Execute a Notebook Code
  • Creating a User-Managed Notebook
  • Training a Model as a Job in Different Environments
  • Training Workflow with Vertex AI
  • Training Dataset Options in Vertex AI
  • Pre-built Containers
  • Custom Containers
  • Distributed Training
  • Hyperparameter Tuning
  • Why Hyperparameters Are Important
  • Techniques to Speed Up Hyperparameter Optimization
  • How Vertex AI Hyperparameter Tuning Works
  • Vertex AI Vizier
  • Tracking Metrics During Training
  • Interactive Shell
  • TensorFlow Profiler
  • What-If Tool
  • Retraining/Redeployment Evaluation
  • Data Drift.
  • Concept Drift
  • When Should a Model Be Retrained?
  • Unit Testing for Model Training and Serving
  • Testing for Updates in API Calls
  • Testing for Algorithmic Correctness
  • Summary
  • Exam Essentials
  • Review Questions
  • Chapter 9 Model Explainability on Vertex AI
  • Model Explainability on Vertex AI
  • Explainable AI
  • Interpretability and Explainability
  • Feature Importance
  • Vertex Explainable AI
  • Data Bias and Fairness
  • ML Solution Readiness
  • How to Set Up Explanations in the Vertex AI
  • Summary
  • Exam Essentials
  • Review Questions
  • Chapter 10 Scaling Models in Production
  • Scaling Prediction Service
  • TensorFlow Serving
  • Serving (Online, Batch, and Caching)
  • Real-Time Static and Dynamic Reference Features
  • Pre-computing and Caching Prediction
  • Google Cloud Serving Options
  • Online Predictions
  • Batch Predictions
  • Hosting Third-Party Pipelines (MLflow) on Google Cloud
  • Testing for Target Performance
  • Configuring Triggers and Pipeline Schedules
  • Summary
  • Exam Essentials
  • Review Questions
  • Chapter 11 Designing ML Training Pipelines
  • Orchestration Frameworks
  • Kubeflow Pipelines
  • Vertex AI Pipelines
  • Apache Airflow
  • Cloud Composer
  • Comparison of Tools
  • Identification of Components, Parameters, Triggers, and Compute Needs
  • Schedule the Workflows with Kubeflow Pipelines
  • Schedule Vertex AI Pipelines
  • System Design with Kubeflow/TFX
  • System Design with Kubeflow DSL
  • System Design with TFX
  • Hybrid or Multicloud Strategies
  • Summary
  • Exam Essentials
  • Review Questions
  • Chapter 12 Model Monitoring, Tracking, and Auditing Metadata
  • Model Monitoring
  • Concept Drift
  • Data Drift
  • Model Monitoring on Vertex AI
  • Drift and Skew Calculation
  • Input Schemas
  • Logging Strategy
  • Types of Prediction Logs
  • Log Settings
  • Model Monitoring and Logging
  • Model and Dataset Lineage.
  • Vertex ML Metadata
  • Vertex AI Experiments
  • Vertex AI Debugging
  • Summary
  • Exam Essentials
  • Review Questions
  • Chapter 13 Maintaining ML Solutions
  • MLOps Maturity
  • MLOps Level 0: Manual/Tactical Phase
  • MLOps Level 1: Strategic Automation Phase
  • MLOps Level 2: CI/CD Automation, Transformational Phase
  • Retraining and Versioning Models
  • Triggers for Retraining
  • Versioning Models
  • Feature Store
  • Solution
  • Data Model
  • Ingestion and Serving
  • Vertex AI Permissions Model
  • Custom Service Account
  • Access Transparency in Vertex AI
  • Common Training and Serving Errors
  • Training Time Errors
  • Serving Time Errors
  • TensorFlow Data Validation
  • Vertex AI Debugging Shell
  • Summary
  • Exam Essentials
  • Review Questions
  • Chapter 14 BigQuery ML
  • BigQuery - Data Access
  • BigQuery ML Algorithms
  • Model Training
  • Model Evaluation
  • Prediction
  • Explainability in BigQuery ML
  • BigQuery ML vs. Vertex AI Tables
  • Interoperability with Vertex AI
  • Access BigQuery Public Dataset
  • Import BigQuery Data into Vertex AI
  • Access BigQuery Data from Vertex AI Workbench Notebooks
  • Analyze Test Prediction Data in BigQuery
  • Export Vertex AI Batch Prediction Results
  • Export BigQuery Models into Vertex AI
  • BigQuery Design Patterns
  • Hashed Feature
  • Transforms
  • Summary
  • Exam Essentials
  • Review Questions
  • Appendix: Answers to Review Questions
  • Chapter 1: Framing ML Problems
  • Chapter 2: Exploring Data and Building Data Pipelines
  • Chapter 3: Feature Engineering
  • Chapter 4: Choosing the Right ML Infrastructure
  • Chapter 5: Architecting ML Solutions
  • Chapter 6: Building Secure ML Pipelines
  • Chapter 7: Model Building
  • Chapter 8: Model Training and Hyperparameter Tuning
  • Chapter 9: Model Explainability on Vertex AI
  • Chapter 10: Scaling Models in Production.
  • Chapter 11: Designing ML Training Pipelines.