Thermal Spreading and Contact Resistance Fundamentals and Applications

Thermal Spreading and Contact Resistance: Fundamentals and Applications offers comprehensive coverage of the key information that engineers need to know to understand thermal spreading and contact resistance, including numerous predictive models for determining thermal spreading resistance and conta...

Descripción completa

Detalles Bibliográficos
Autor principal: Muzychka, Yuri S. (-)
Otros Autores: Yovanovich, M. Michael
Formato: Libro electrónico
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated 2023.
Edición:1st ed
Colección:Wiley-ASME Press Series
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009769037906719
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright
  • Contents
  • About the Authors
  • Preface
  • Acknowledgments
  • Nomenclature
  • Chapter 1 Fundamental Principles of Thermal Spreading Resistance
  • 1.1 Applications
  • 1.2 Semi‐Infinite Regions, Flux Tubes, Flux Channels, and Finite Spreaders
  • 1.3 Governing Equations and Boundary Conditions
  • 1.3.1 Source Plane Conditions
  • 1.3.2 Sink Plane Conditions
  • 1.3.3 Interface Conditions
  • 1.4 Thermal Spreading Resistance
  • 1.4.1 Half‐Space Regions
  • 1.4.2 Semi‐Infinite Flux Tubes and Channels
  • 1.4.3 Finite Disks and Channels
  • 1.5 Solution Methods
  • 1.6 Summary
  • References
  • Chapter 2 Thermal Spreading in Isotropic Half‐Space Regions
  • 2.1 Circular Area on a Half‐Space
  • 2.1.1 Isothermal Circular Source
  • 2.1.2 Isoflux Circular Source
  • 2.1.3 Parabolic Flux Circular Source
  • 2.1.4 Summary of Circular Source Thermal Spreading Resistance
  • 2.2 Elliptical Area on a Half‐Space
  • 2.2.1 Isothermal Elliptical Source
  • 2.2.2 Isoflux Elliptical Source
  • 2.2.3 Parabolic Flux Elliptical Source
  • 2.3 Method of Superposition of Point Sources
  • 2.3.1 Application to a Circular Source
  • 2.3.2 Application to Triangular Source Areas
  • 2.4 Rectangular Area on a Half‐Space
  • 2.4.1 Isothermal Rectangular Area
  • 2.4.2 Isoflux Rectangular Source
  • 2.5 Spreading Resistance of Symmetric Singly Connected Areas: The Hyperellipse
  • 2.6 Regular Polygonal Isoflux Sources
  • 2.7 Additional Results for Other Source Shapes
  • 2.7.1 Triangular Source
  • 2.7.2 Rhombic Source
  • 2.7.3 Rectangular Source with Rounded Ends
  • 2.7.4 Rectangular Source with Semicircular Ends
  • 2.8 Model for an Arbitrary Singly Connected Heat Source on a Half‐Space
  • 2.9 Circular Annular Area on a Half‐Space
  • 2.9.1 Isothermal Circular Annular Ring Source
  • 2.9.2 Isoflux Circular Annular Ring Source.
  • 2.10 Other Doubly Connected Areas on a Half‐Space
  • 2.11 Problems with Source Plane Conductance
  • 2.11.1 Isoflux Heat Source on a Convectively Cooled Half‐Space
  • 2.11.2 Effect of Source Contact Conductance on Spreading Resistance
  • 2.12 Circular Area on Single Layer (Coating) on Half‐Space
  • 2.12.1 Equivalent Isothermal Circular Contact
  • 2.12.2 Isoflux Circular Contact
  • 2.12.3 Isoflux, Equivalent Isothermal, and Isothermal Solutions
  • 2.12.3.1 Isoflux Contact Area
  • 2.12.3.2 Equivalent Isothermal Contact Area
  • 2.12.3.3 Isothermal Contact Area
  • 2.13 Thermal Spreading Resistance Zone: Elliptical Heat Source
  • 2.14 Temperature Rise of Multiple Isoflux Sources
  • 2.14.1 Two Coplanar Isoflux Circular Sources
  • 2.15 Temperature Rise in an Arbitrary Area
  • 2.15.1 Temperature Rise at Arbitrary Point
  • 2.15.2 Average Temperature Rise
  • 2.16 Superposition of Isoflux Circular Heat Sources
  • 2.16.1 Nine Coplanar Circles on Square Cluster
  • 2.16.2 Five Coplanar Circles on Square Cluster
  • 2.16.3 Four Coplanar Circles on Triangular Cluster
  • 2.17 Superposition of Micro‐ and Macro‐Spreading Resistances
  • References
  • Chapter 3 Circular Flux Tubes and Disks
  • 3.1 Semi‐Infinite Flux Tube
  • 3.1.1 Isothermal Source on a Flux Tube
  • 3.2 Finite Disk with Sink Plane Conductance
  • 3.2.1 Distributed Heat Flux over Source Area
  • 3.3 Compound Disk
  • 3.3.1 Special Limits in the Compound Disk Solution
  • 3.4 Multilayered Disks
  • 3.5 Flux Tube with Circular Annular Heat Source
  • 3.6 Flux Tubes and Disks with Edge Conductance
  • 3.7 Spreading Resistance for an Eccentric Source on a Flux Tube
  • 3.8 Thermal Spreading with Variable Conductivity Near the Contact Surface
  • 3.9 Effect of Surface Curvature on Thermal Spreading Resistance in a Flux Tube
  • References
  • Chapter 4 Rectangular Flux Channels.
  • 4.1 Two‐Dimensional Semi‐Infinite Flux Channel
  • 4.1.1 Variable Heat Flux Distributions
  • 4.2 Three‐Dimensional Semi‐Infinite Flux Channel
  • 4.2.1 Correlation Equations for Various Combinations of Source Areas and Boundary Conditions
  • 4.3 Finite Two‐ and Three‐Dimensional Flux Channels
  • 4.4 Compound Two‐ and Three‐Dimensional Flux Channels
  • 4.4.1 Special Limiting Cases for Rectangular Flux Channels
  • 4.5 Finite Two‐ and Three‐Dimensional Flux Channels with Eccentric Heat Sources
  • 4.6 Rectangular Flux Channels with Edge Conductance
  • 4.7 Multilayered Rectangular Flux Channels
  • 4.8 Rectangular Flux Channel with an Elliptic Heat Source
  • 4.9 Spreading in a Curved Flux Channel (Annular Sector)
  • 4.10 Effect of Surface Curvature on Thermal Spreading Resistance in a Two‐Dimensional Flux Channel
  • References
  • Chapter 5 Orthotropic Media
  • 5.1 Heat Conduction in Orthotropic Media
  • 5.2 Circular Source on a Half‐Space
  • 5.3 Single‐Layer Flux Tubes
  • 5.3.1 Circular Flux Tubes with Edge Cooling
  • 5.4 Single‐Layer Rectangular Flux Channel
  • 5.4.1 Rectangular Flux Channels with Edge Cooling
  • 5.5 Multilayered Orthotropic Spreaders
  • 5.5.1 Circular Flux Tubes
  • 5.5.2 Multilayered Orthotropic Flux Channels
  • 5.5.3 Multilayered Orthotropic Flux Channels with an Eccentric Source
  • 5.6 General Multilayered Rectangular Orthotropic Spreaders
  • 5.6.1 Coordinate Transformations for Fully Orthotropic Media
  • 5.6.2 General Solution for kx≠ky≠kz
  • 5.6.3 Total Thermal Resistance
  • 5.7 Measurement of Orthotropic Thermal Conductivity
  • References
  • Chapter 6 Multisource Analysis for Microelectronic Devices
  • 6.1 Multiple Heat Sources on Finite Isotropic Spreaders
  • 6.1.1 Single Source Surface Temperature Distribution
  • 6.1.1 Centroidal Source Temperature
  • 6.1.1 Mean Source Temperature.
  • 6.1.2 Multisource Surface Temperature Distribution
  • 6.1.2 Centroidal Source Temperature
  • 6.1.2 Mean Source Temperature
  • 6.2 Influence Coefficient Method
  • 6.2.1 Thermal Resistance
  • 6.2.2 Source Plane Convection
  • 6.3 Extension to Compound, Orthotropic, and Multilayer Spreaders
  • 6.3.1 Compound Media
  • 6.3.1 Finite Interfacial Conductance
  • 6.3.1 Perfect Interfacial Contact
  • 6.3.2 Orthotropic Spreaders
  • 6.3.3 Multilayer Isotropic/Orthotropic Spreaders
  • 6.4 Non‐Fourier Conduction Effects in Microscale Devices
  • 6.5 Application to Irregular‐Shaped Heat Sources
  • References
  • Chapter 7 Transient Thermal Spreading Resistance
  • 7.1 Transient Spreading Resistance of an Isoflux Source on an Isotropic Half‐Space
  • 7.1.1 Transient Spreading Resistance of an Isoflux Circular Area
  • 7.1.2 Transient Spreading Resistance of an Isoflux Strip on a Half‐Space
  • 7.1.3 Transient Spreading Resistance of an Isoflux Hyperellipse
  • 7.1.4 Transient Spreading Resistance of Isoflux Regular Polygons
  • 7.1.5 Universal Time Function
  • 7.2 Transient Spreading Resistance of an Isothermal Source on a Half‐Space
  • 7.3 Models for Transient Thermal Spreading in a Half‐Space
  • 7.4 Transient Spreading Resistance Between Two Half‐Spaces in Contact Through a Circular Area
  • 7.5 Transient Spreading in a Two‐Dimensional Flux Channel
  • 7.6 Transient Spreading in a Circular Flux Tube from an Isoflux Source
  • 7.7 Transient Spreading in a Circular Flux Tube from an Isothermal Source
  • 7.8 Models for Transient Thermal Spreading in Circular Flux Tubes
  • References
  • Chapter 8 Applications with Nonuniform Conductance in the Sink Plane
  • 8.1 Applications with Nonuniform Conductance
  • 8.1.1 Distributed Heat Transfer Coefficient Models
  • 8.1.2 Mixed‐Boundary Conditions in the Source Plane
  • 8.1.3 Least Squares Approximation.
  • 8.2 Finite Flux Channels with Variable Conductance
  • 8.2.1 Two‐Dimensional Flux Channel
  • 8.2.2 Three‐Dimensional Flux Channel
  • 8.3 Finite Flux Tube with Variable Conductance
  • References
  • Chapter 9 Further Applications of Spreading Resistance
  • 9.1 Moving Heat Sources
  • 9.1.1 Governing Equations
  • 9.1.2 Asymptotic Limits
  • 9.1.3 Stationary and Moving Heat Source Limits
  • 9.1.3.1 Stationary Heat Sources (Pe0)
  • 9.1.3.2 Moving Heat Sources (Pe∞)
  • 9.1.4 Analysis of Real Contacts
  • 9.1.4.1 Effect of Contact Shape
  • 9.1.4.2 Models for All Peclet Numbers
  • 9.1.5 Prediction of Flash Temperature
  • 9.2 Problems Involving Mass Diffusion
  • 9.2.1 Mass Transport from a Circular Source on a Half‐Space
  • 9.2.2 Diffusion from Other Source Shapes
  • 9.2.2.1 Elliptic Source
  • 9.2.2.2 Rectangular Source
  • 9.3 Mass Diffusion with Chemical Reaction
  • 9.3.1 Diffusion from a 2D Strip Source with Chemical Reaction
  • 9.3.2 Circular Source on a Disk with Chemical Reaction
  • 9.3.3 Diffusion from a Rectangular Source with Chemical Reaction
  • 9.4 Diffusion Limited Slip Behavior: Super‐Hydrophobic Surfaces
  • 9.4.1 Circular and Square Pillars
  • 9.4.1.1 Circular/Square
  • 9.4.1.2 Ridges
  • 9.4.2 Rectangular and Elliptical Pillars for ϕs0
  • 9.4.3 Effect of Meniscus Curvature
  • 9.5 Problems with Phase Change in the Source Region (Solidification)
  • 9.6 Thermal Spreading with Temperature‐Dependent Thermal Conductivity
  • 9.6.1 Kirchoff Transform
  • 9.6.2 Thermal Conductivity Models
  • 9.6.3 Application for Thermal Spreading Resistance in a Rectangular Flux Channel
  • 9.7 Thermal Spreading in Spherical Domains
  • 9.7.1 Thermal Spreading in Hollow Spherical Shells
  • 9.7.2 Thermal Spreading in a Hollow Hemispherical Shell with Convection on the Interior Boundary
  • References
  • Chapter 10 Introduction to Thermal Contact Resistance.
  • 10.1 Thermal Contact Resistance.