Machine learning for emotion analysis in Python build AI-powered tools for analyzing emotion using natural language processing and machine learning / Allan Ramsay, Tariq Ahmad

Kickstart your emotion analysis journey with this step-by-step guide to data science success Key Features Discover the inner workings of the end-to-end emotional analysis workflow Explore the use of various ML models to derive meaningful insights from data Hone your craft by building and tweaking co...

Descripción completa

Detalles Bibliográficos
Otros Autores: Ramsay, Allan, 1686-1758, author (author), Ahmad, Tarek, author
Formato: Libro electrónico
Idioma:Inglés
Publicado: Birmingham, United Kingdom : Packt Publishing Ltd 2023.
Edición:1st edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009769035406719
Tabla de Contenidos:
  • Preface
  • Part 1: Essentials
  • Chapter 1: Foundations
  • Emotions
  • Categorical
  • Dimensional
  • Sentiment
  • Why emotion analysis is important
  • Introduction to NLP
  • Phrase structure grammar versus dependency grammar
  • Rule-based parsers versus data-driven parsers
  • Semantics (the study of meaning)
  • Introduction to machine learning
  • Technical requirements
  • A sample project
  • Logistic regression
  • Support vector machines (SVMs)
  • K-nearest neighbors (k-NN)
  • Decision trees
  • Random forest
  • Neural networks
  • Making predictions
  • A sample text classification problem
  • Summary
  • References
  • Part 2: Building and Using a Dataset
  • Chapter 2: Building and Using a Dataset
  • Ready-made data sources
  • Creating your own dataset
  • Data from PDF files
  • Data from web scraping
  • Data from RSS feeds
  • Data from APIs
  • Other data sources
  • Transforming data
  • Non-English datasets
  • Evaluation
  • Summary
  • References
  • Chapter 3: Labeling Data
  • Why labeling must be high quality
  • The labeling process
  • Best practices
  • Labeling the data
  • Gold tweets
  • The competency task
  • The annotation task
  • Buy or build?
  • Results
  • Inter-annotator reliability
  • Calculating Krippendorff's alpha
  • Debrief
  • Summary
  • References
  • Chapter 4: Preprocessing - Stemming, Tagging, and Parsing
  • Readers
  • Word parts and compound words
  • Tokenizing, morphology, and stemming
  • Spelling changes
  • Multiple and contextual affixes
  • Compound words
  • Tagging and parsing
  • Summary
  • References
  • Part 3: Approaches
  • Chapter 5: Sentiment Lexicons and Vector-Space Models
  • Datasets and metrics
  • Sentiment lexicons
  • Extracting a sentiment lexicon from a corpus
  • Similarity measures and vector-space models
  • Vector spaces.
  • Calculating similarity
  • Latent semantic analysis
  • Summary
  • References
  • Chapter 6: Naïve Bayes
  • Preparing the data for sklearn
  • Naïve Bayes as a machine learning algorithm
  • Naively applying Bayes' theorem as a classifier
  • Multi-label datasets
  • Summary
  • References
  • Chapter 7: Support Vector Machines
  • A geometric introduction to SVMs
  • Using SVMs for sentiment mining
  • Applying our SVMs
  • Using a standard SVM with a threshold
  • Making multiple SVMs
  • Summary
  • References
  • Chapter 8: Neural Networks and Deep Neural Networks
  • Single-layer neural networks
  • Multi-layer neural networks
  • Summary
  • References
  • Chapter 9: Exploring Transformers
  • Introduction to transformers
  • How data flows through the transformer model
  • Input embeddings
  • Positional encoding
  • Encoders
  • Decoders
  • Linear layer
  • Softmax layer
  • Output probabilities
  • Hugging Face
  • Existing models
  • Transformers for classification
  • Implementing transformers
  • Google Colab
  • Single-emotion datasets
  • Multi-emotion datasets
  • Summary
  • References
  • Chapter 10: Multiclassifiers
  • Multilabel datasets are hard to work with
  • Confusion matrices
  • Using "neutral" as a label
  • Thresholds and local thresholds
  • Multiple independent classifiers
  • Summary
  • Part 4: Case Study
  • Chapter 11: Case Study - The Qatar Blockade
  • The case study
  • Short-term changes
  • Long-term changes
  • Proportionality revisited
  • Summary.