Biostatistics for the biological and health sciences
For courses in Biostatistics. Real-world applications connect statistical concepts to everyday life. Biostatistics for the Biological and Health Sciences uses a variety of real-world applications to bring statistical theories and methods to life. Through these examples and a friendly writing style,...
Otros Autores: | , , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Harlow, England :
Pearson Education Limited
[2019]
|
Edición: | Second edition |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009767231906719 |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright Page
- About the Authors
- Contents
- Preface
- Acknowledgments
- 1. Introduction to Statistics
- 1-1. Statistical and Critical Thinking
- 1-2. Types of Data
- 1-3. Collecting Sample Data
- 2. Exploring Data with Tables and Graphs
- 2-1. Frequency Distributions for Organizing and Summarizing Data
- 2-2. Histograms
- 2-3. Graphs That Enlighten and Graphs That Deceive
- 2-4. Scatterplots, Correlation, and Regression
- 3. Describing, Exploring, and Comparing Data
- 3-1. Measures of Center
- 3-2. Measures of Variation
- 3-3. Measures of Relative Standing and Boxplots
- 4. Probability
- 4-1. Basic Concepts of Probability
- 4-2. Addition Rule and Multiplication Rule
- 4-3. Complements, Conditional Probability, and Bayes' Theorem
- 4-4. Risks and Odds
- 4-5. Rates of Mortality, Fertility, and Morbidity
- 4-6. Counting
- 5. Discrete Probability Distributions
- 5-1. Probability Distributions
- 5-2. Binomial Probability Distributions
- 5-3. Poisson Probability Distributions
- 6. Normal Probability Distributions
- 6-1. The Standard Normal Distribution
- 6-2. Real Applications of Normal Distributions
- 6-3. Sampling Distributions and Estimators
- 6-4. The Central Limit Theorem
- 6-5. Assessing Normality
- 6-6. Normal as Approximation to Binomial
- 7. Estimating Parameters and Determining Sample Sizes
- 7-1. Estimating a Population Proportion
- 7-2. Estimating a Population Mean
- 7-3. Estimating a Population Standard Deviation or Variance
- 7-4. Bootstrapping: Using Technology for Estimates
- 8. Hypothesis Testing
- 8-1. Basics of Hypothesis Testing
- 8-2. Testing a Claim About a Proportion
- 8-3. Testing a Claim About a Mean
- 8-4. Testing a Claim About a Standard Deviation or Variance
- 9. Inferences from Two Samples
- 9-1. Two Proportions
- 9-2. Two Means: Independent Samples.
- 9-3. Two Dependent Samples (Matched Pairs)
- 9-4. Two Variances or Standard Deviations
- 10. Correlation and Regression
- 10-1. Correlation
- 10-2. Regression
- 10-3. Prediction Intervals and Variation
- 10-4. Multiple Regression
- 10-5. Dummy Variables and Logistic Regression
- 11. Goodness-of-Fit and Contingency Tables
- 11-1. Goodness-of-Fit
- 11-2. Contingency Tables
- 12. Analysis of Variance
- 12-1. One-Way ANOVA
- 12-2. Two-Way ANOVA
- 13. Nonparametric Tests
- 13-1. Basics of Nonparametric Tests
- 13-2. Sign Test
- 13-3. Wilcoxon Signed-Ranks Test for Matched Pairs
- 13-4. Wilcoxon Rank-Sum Test for Two Independent Samples
- 13-5. Kruskal-Wallis Test for Three or More Samples
- 13-6. Rank Correlation
- 14. Survival Analysis
- 14-1. Life Tables
- 14-2. Kaplan-Meier Survival Analysis
- Appendix A: Tables
- Appendix B: Data Sets
- Appendix C: Websites and Bibliography of Books
- Appendix D: Answers to Odd-Numbered Section Exercises
- Credits
- Index
- Back Cover.