Gradient expectations structure, origins, and synthesis of predictive neural networks
An insightful investigation into the mechanisms underlying the predictive functions of neural networks--and their ability to chart a new path for AI. Prediction is a cognitive advantage like few others, inherently linked to our ability to survive and thrive. Our brains are awash in signals that embo...
Autor principal: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Cambridge, MA :
The MIT Press
2023
|
Edición: | 1st ed |
Colección: | The MIT Press
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009762681206719 |
Tabla de Contenidos:
- Intro
- Title Page
- Copyright Page
- Dedication
- Table of Contents
- Preface
- Acknowledgments
- 1. Introduction
- 1.1. Data from Predictions
- 1.2. Movement and Prediction
- 1.3. Adaptation and Emergence
- 1.3.1. Gradients and Emergence in Neural Networks
- 1.4. Overflowing Expectations
- 2. Conceptual Foundations of Prediction
- 2.1. Compare and Err
- 2.2. Guesses and Goals
- 2.3. Gradients
- 2.3.1. Gradients Rising
- 2.4. Sequences
- 2.5. Abstracting by Averaging
- 2.6. Control and Prediction
- 2.7. Predictive Coding
- 2.8. Tracking Marr's Tiers
- 3. Biological Foundations of Prediction
- 3.1. Gradient-Following Bacteria
- 3.2. Neural Motifs for Gradient Calculation
- 3.3. Birth of a PID Controller
- 3.3.1. Adaptive Control in the Cerebellum
- 3.4. Detectors and Generators
- 3.4.1. The Hippocampus
- 3.4.2. Conceptual Embedding in the Hippocampus
- 3.5. Gradients of Predictions in the Basal Ganglia
- 3.6. Procedural versus Declarative Prediction
- 3.7. Rampant Expectations
- 4. Neural Energy Networks
- 4.1. Energetic Basis of Learning and Prediction
- 4.2. Energy Landscapes and Gradients
- 4.3. The Boltzmann Machine
- 4.4. The Restricted Boltzmann Machine (RBM)
- 4.5. Free Energy
- 4.5.1. Variational Free Energy
- 4.6. The Helmholtz Machine
- 4.7. The Free Energy Principle
- 4.8. Getting a Grip
- 5. Predictive Coding
- 5.1. Information Theory and Perception
- 5.2. Predictive Coding on High
- 5.2.1. Learning Proper Predictions
- 5.3. Predictive Coding for Machine Learning
- 5.3.1. The Backpropagation Algorithm
- 5.3.2. Backpropagation via Predictive Coding
- 5.4. In Theory
- 6. Emergence of Predictive Networks
- 6.1. Facilitated Variation
- 6.2. Origins of Sensorimotor Activity
- 6.2.1. Origins of Oscillations
- 6.2.2. Activity Regulation in the Brain.
- 6.2.3. Competition and Cooperation in Brain Development
- 6.2.4. Layers and Modules
- 6.2.5. Running through the Woods on an Icy Evening
- 6.2.6. Oscillations and Learning
- 6.3. A Brief Evolutionary History of the Predictive Brain
- 7. Evolving Artificial Predictive Networks
- 7.1. I'm a Doctor, Not a Connectionist
- 7.2. Evolving Artificial Neural Networks (EANNs)
- 7.2.1. Reconciling EANNs with Deep Learning
- 7.3. Evolving Predictive Coding Networks
- 7.3.1. Preserving Backpropagation in a Local Form
- 7.3.2. Phylogenetic, Ontogenetic, and Epigenetic (POE)
- 7.4. Continuous Time Recurrent Neural Networks (CTRNNs)
- 7.4.1. Evolving Minimally Cognitive Agents
- 7.4.2. Cognitive Robots Using Predictive Coding
- 7.4.3. Toward More Emergent CTRNNs
- 7.5. Predictive POE Networks
- 7.5.1. Simulating Neural Selectionism and Constructivism
- 7.5.2. Predictive Constructivism
- 7.5.3. The D'Arcy Model
- 7.5.4. Neurites to Neurons in D'Arcy
- 7.5.5. Peripherals in D'Arcy
- 7.5.6. Neuromodulators in D'Arcy
- 7.5.7. Predictively Unpredictable
- 7.6. Most Useful and Excellent Designs
- 8. Conclusion
- 8.1. Schrodinger's Frozen Duck
- 8.2. Expectations Great and Small
- 8.3. As Expected
- 8.4. Gradient Expectations
- 8.5. Expecting the Unexpected
- References
- Index.