Flight dynamics, simulation, and control for rigid and flexible aircraft

"Flight Dynamics, Simulation, and Control of Aircraft: For Rigid and Flexible Aircraft, Second Edition explains the basics of nonlinear aircraft dynamics and the principles of control configured aircraft design, as applied to rigid and flexible aircraft, drones, and UAVs. The book is intended f...

Descripción completa

Detalles Bibliográficos
Otros Autores: Vepa, Ranjan, author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Boca Raton, Florida ; London ; New York : CRC Press 2023.
Edición:Second edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009757937406719
Tabla de Contenidos:
  • Cover
  • Half Title
  • Title Page
  • Copyright Page
  • Dedication
  • Table of Contents
  • List of Acronyms
  • Preface
  • Author
  • Chapter 1 Introduction to Flight Vehicles
  • 1.1 Introduction
  • 1.2 Components of an Aeroplane
  • 1.2.1 Fuselage
  • 1.2.2 Wings
  • 1.2.3 Tail Surfaces or Empennage
  • 1.2.4 Landing Gear
  • 1.3 Basic Principles of Flight
  • 1.3.1 Forces Acting on an Aeroplane
  • 1.3.2 Drag and Its Reduction
  • 1.3.3 Aerodynamically Conforming Shapes: Streamlining
  • 1.3.4 Stability and Balance
  • 1.4 Flying Control Surfaces: Elevator, Ailerons and Rudder
  • 1.4.1 Flaps, High-Lift and Flow Control Devices
  • 1.4.2 Introducing Boundary Layers
  • 1.4.3 Spoilers
  • 1.5 Pilot's Controls: The Throttle, the Control Column and Yoke, the Rudder Pedals and the Toe Brakes
  • 1.6 Modes of Flight
  • 1.6.1 Static and In-Flight Stability Margins
  • 1.7 Power Plant
  • 1.7.1 Propeller-Driven Aircraft
  • 1.7.2 Jet Propulsion
  • 1.8 Avionics, Instrumentation and Systems
  • 1.8.1 Autonomous Navigation
  • 1.9 Geometry of Aerofoils and Wings
  • 1.9.1 Aerofoil Geometry
  • 1.9.2 Chord Line
  • 1.9.3 Camber
  • 1.9.4 Leading and Trailing Edges
  • 1.9.5 Specifying Aerofoils
  • 1.9.6 Equations Defining Mean Camber Line
  • 1.9.7 Aerofoil Thickness Distributions
  • 1.9.8 Wing Geometry
  • Chapter Highlights
  • Exercises
  • Answers to Selected Exercises
  • References
  • Chapter 2 Basic Principles Governing Aerodynamic Flows
  • 2.1 Introduction
  • 2.2 Continuity Principle
  • 2.2.1 Streamlines and Stream Tubes
  • 2.3 Bernoulli's Principle
  • 2.4 Laminar Flows and Boundary Layers
  • 2.5 Turbulent Flows
  • 2.6 Aerodynamics of Aerofoils and Wings
  • 2.6.1 Flow Around an Aerofoil
  • 2.6.2 Mach Number and Subsonic and Supersonic Flows
  • 2.7 Properties of Air in the Atmosphere.
  • 2.7.1 Composition of the Atmosphere: The Troposphere, Stratosphere, Mesosphere, Ionosphere and Exosphere
  • 2.7.2 Air Density
  • 2.7.3 Temperature
  • 2.7.4 Pressure
  • 2.7.5 Effects of Pressure and Temperature
  • 2.7.6 Viscosity
  • 2.7.7 Bulk Modulus of Elasticity
  • 2.7.8 Temperature Variations with Altitude: The Lapse Rate
  • 2.8 International Standard Atmosphere (from ESDU 77021, 1986)
  • 2.9 Generation of Lift and Drag
  • 2.10 Aerodynamic Forces and Moments
  • 2.10.1 Aerodynamic Coefficients
  • 2.10.2 Aerofoil Drag
  • 2.10.3 Aircraft Lift Equation and Lift Curve Slope
  • 2.10.4 Centre of Pressure
  • 2.10.5 Aerodynamic Centre
  • 2.10.6 Pitching Moment Equation
  • 2.10.7 Elevator Hinge Moment Coefficient
  • Chapter Highlights
  • Exercises
  • Answers to Selected Exercises
  • References
  • Chapter 3 Mechanics of Equilibrium Flight
  • 3.1 Introduction
  • 3.2 Speeds of Equilibrium Flight
  • 3.3 Basic Aircraft Performance
  • 3.3.1 Optimum Flight Speeds
  • 3.4 Conditions for Minimum Drag
  • 3.5 Stability in the Vicinity of the Minimum Drag Speed
  • 3.6 Range and Endurance Estimation
  • 3.7 Trim
  • 3.8 Stability of Equilibrium Flight
  • 3.9 Longitudinal Static Stability
  • 3.9.1 Neutral Point (Stick-Fixed)
  • 3.9.2 Neutral Point (Stick-Free)
  • 3.10 Manoeuvrability
  • 3.10.1 Pull-Out Manoeuvre
  • 3.10.2 Manoeuvre Margin: Stick-Fixed
  • 3.10.3 Manoeuvre Margin: Stick-Free
  • 3.11 Lateral Stability and Stability Criteria
  • 3.12 Experimental Determination of Aircraft Stability Margins
  • 3.13 Summary of Equilibrium- and Stability-Related Equations
  • Chapter Highlights
  • Exercises
  • Answers to Selected Exercises
  • References
  • Chapter 4 Aircraft Non-Linear Dynamics: Equations of Motion
  • 4.1 Introduction
  • 4.2 Aircraft Dynamics
  • 4.3 Aircraft Motion in a 2D Plane
  • 4.4 Moments of Inertia
  • 4.5 Euler's Equations and the Dynamics of Rigid Bodies.
  • 4.6 Description of the Attitude or Orientation
  • 4.7 Aircraft Equations of Motion
  • 4.8 Motion-Induced Aerodynamic Forces and Moments
  • 4.9 Non-Linear Dynamics of Aircraft Motion and Stability Axes
  • 4.9.1 Equations of Motion in Wind Axis Coordinates, V[sub(T)], α and β
  • 4.9.2 Reduced-Order Modelling: The Short-Period Approximations
  • 4.10 Trimmed Equations of Motion
  • 4.10.1 Non-Linear Equations of Perturbed Motion
  • 4.10.2 Linear Equations of Motion
  • Chapter Highlights
  • Exercises
  • References
  • Chapter 5 Small Perturbations and the Linearised, Decoupled Equations of Motion
  • 5.1 Introduction
  • 5.2 Small Perturbations and Linearisations
  • 5.3 Linearising the Aerodynamic Forces and Moments: Stability Derivative Concept
  • 5.4 Direct Formulation in the Stability Axis
  • 5.5 Decoupled Equations of Motion
  • 5.5.1 Case I: Motion in the Longitudinal Plane of Symmetry
  • 5.5.2 Case II: Motion in the Lateral Direction, Perpendicular to the Plane of Symmetry
  • 5.6 Decoupled Equations of Motion in Terms of the Stability Axis Aerodynamic Derivatives
  • 5.7 Addition of Aerodynamic Controls and Throttle
  • 5.8 Non-Dimensional Longitudinal and Lateral Dynamics
  • 5.9 Simplified State-Space Equations of Longitudinal and Lateral Dynamics
  • 5.10 Simplified Concise Equations of Longitudinal and Lateral Dynamics
  • Chapter Highlights
  • Exercises
  • Reference
  • Chapter 6 Longitudinal and Lateral Linear Stability and Control
  • 6.1 Introduction
  • 6.2 Dynamic and Static Stability
  • 6.2.1 Longitudinal Stability Analysis
  • 6.2.2 Lateral Dynamics and Stability
  • 6.3 Modal Description of Aircraft Dynamics and the Stability of the Modes
  • 6.3.1 Slow-Fast Partitioning of the Longitudinal Dynamics
  • 6.3.2 Slow-Fast Partitioning of the Lateral Dynamics
  • 6.3.3 Summary of Longitudinal and Lateral Modal Equations
  • 6.3.3.1 Phugoid or Long Period.
  • 6.3.3.2 Short Period
  • 6.3.3.3 Third Oscillatory Mode
  • 6.3.3.4 Roll Subsidence
  • 6.3.3.5 Dutch Roll
  • 6.3.3.6 Spiral
  • 6.4 Aircraft Lift and Drag Estimation
  • 6.4.1 Fuselage Lift and Moment Coefficients
  • 6.4.2 Wing-Tail Interference Effects
  • 6.4.3 Estimating the Wing's Maximum Lift Coefficient
  • 6.4.4 Drag Estimation
  • 6.5 Estimating the Longitudinal Aerodynamic Derivatives
  • 6.6 Estimating the Lateral Aerodynamic Derivatives
  • 6.7 Perturbation Analysis of Trimmed Flight
  • 6.7.1 Perturbation Analysis of Longitudinal Trimmed Flight
  • 6.7.2 Perturbation Analysis of Lateral Trimmed Flight
  • 6.7.2.1 Control Settings for Steady Sideslip
  • 6.7.2.2 Control Settings for Turn Coordination and Banking
  • 6.7.3 Perturbations of Coupled Trimmed Flight
  • 6.7.4 Simplified Analysis of Complex Manoeuvres: The Sidestep Manoeuvre
  • Chapter Highlights
  • Exercises
  • Answers to Selected Exercises
  • Note
  • References
  • Chapter 7 Aircraft Dynamic Response: Numerical Simulation and Non-Linear Phenomenon
  • 7.1 Introduction
  • 7.2 Longitudinal and Lateral Modal Equations
  • 7.3 Methods of Computing Aircraft Dynamic Response
  • 7.3.1 Laplace Transform Method
  • 7.3.2 Aircraft Response Transfer Functions
  • 7.3.3 Direct Numerical Integration
  • 7.4 System Block Diagram Representation
  • 7.4.1 Numerical Simulation of Flight Using MATLAB[sup(®)]/Simulink[sup(®)]
  • 7.5 Atmospheric Disturbance: Deterministic Disturbances
  • 7.6 Principles of Random Atmospheric Disturbance Modelling
  • 7.6.1 White Noise: Power Spectrum and Autocorrelation
  • 7.6.2 Linear Time-Invariant System with Stochastic Process Input
  • 7.7 Application to Atmospheric Turbulence Modelling
  • 7.8 Aircraft Non-Linear Dynamic Response Phenomenon
  • 7.8.1 Aircraft Dynamic Non-Linearities and Their Analysis
  • 7.8.2 High-Angle-of-Attack Dynamics and Its Consequences.
  • 7.8.3 Post-Stall Behaviour
  • 7.8.4 Tumbling and Autorotation
  • 7.8.5 Lateral Dynamic Phenomenon
  • 7.8.6 Flat Spin and Deep Spin
  • 7.8.7 Wing Drop, Wing Rock and Nose Slice
  • 7.8.8 Fully Coupled Motions: The Falling Leaf
  • 7.8.9 Regenerative Phenomenon
  • Chapter Highlights
  • Exercises
  • References
  • Chapter 8 Aircraft Flight Control
  • 8.1 Automatic Flight Control Systems: An Introduction
  • 8.2 Functions of a Flight Control System
  • 8.3 Integrated Flight Control System
  • 8.3.1 Guidance System: Interfacing to the Automatic Flight Control System
  • 8.3.2 Flight Management System
  • 8.4 Flight Control System Design
  • 8.4.1 Block Diagram Algebra
  • 8.4.2 Return Difference Equation
  • 8.4.3 Laplace Transform
  • 8.4.4 Stability of Uncontrolled and Controlled Systems
  • 8.4.5 Routh's Tabular Method
  • 8.4.6 Frequency Response
  • 8.4.7 Bode Plots
  • 8.4.8 Nyquist Plots
  • 8.4.9 Stability in the Frequency Domain
  • 8.4.10 Stability Margins: Gain and Phase Margins
  • 8.4.11 Mapping Complex Functions and Nyquist Diagrams
  • 8.4.12 Time Domain: State Variable Representation
  • 8.4.13 Solution of the State Equations and the Controllability Condition
  • 8.4.14 State-Space and Transfer Function Equivalence
  • 8.4.15 Transformations of State Variables
  • 8.4.16 Design of a Full-State Variable Feedback Control Law
  • 8.4.17 Root Locus Method
  • 8.4.18 Root Locus Principle
  • 8.4.19 Root Locus Sketching Procedure
  • 8.4.20 Producing a Root Locus Using MATLAB®
  • 8.4.21 Application of the Root Locus Method: Unity Feedback with a PID Control Law
  • 8.5 Optimal Control of Flight Dynamics
  • 8.5.1 Compensating Full-State Feedback: Observers and Compensators
  • 8.5.2 Observers for Controller Implementation
  • 8.5.3 Observer Equations
  • 8.5.4 Special Cases: Full- and First-Order Observers
  • 8.5.5 Solving the Observer Equations
  • 8.5.6 Luenberger Observer.
  • 8.5.7 Optimisation Performance Criteria.