How to Measure Anything in Cybersecurity Risk

A start-to-finish guide for realistically measuring cybersecurity risk In the newly revised How to Measure Anything in Cybersecurity Risk, Second Edition, a pioneering information security professional and a leader in quantitative analysis methods delivers yet another eye-opening text applying the q...

Descripción completa

Detalles Bibliográficos
Otros Autores: Hubbard, Douglas W., 1962- author (author), Seiersen, Richard, 1967- author
Formato: Libro electrónico
Idioma:Inglés
Publicado: Hoboken, NJ : Wiley-Blackwell [2023]
Edición:Second edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009757936206719
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright Page
  • Contents
  • Foreword for the Second Edition
  • Acknowledgments
  • Preface
  • How to Measure Anything in Cybersecurity Risk
  • Introduction
  • Why We Chose This Topic
  • What Is This Book About?
  • We Need More Than Technology
  • Part I Why Cybersecurity Needs Better Measurements for Risk
  • Chapter 1 The One Patch Most Needed in Cybersecurity
  • Insurance: A Canary in the Coal Mine
  • The Global Attack Surface
  • The Cyber Threat Response
  • A Proposal for Cybersecurity Risk Management
  • Notes
  • Chapter 2 A Measurement Primer for Cybersecurity
  • The Concept of Measurement
  • A Taxonomy of Measurement Scales
  • The Object of Measurement
  • The Methods of Measurement
  • Notes
  • Chapter 3 The Rapid Risk Audit: Starting With a Simple Quantitative Risk Model
  • The Setup and Terminology
  • The Rapid Audit Steps
  • Some Initial Sources of Data
  • The Expert as the Instrument
  • Supporting the Decision: Return on Controls
  • Doing "Uncertainty Math"
  • Visualizing Risk With a Loss Exceedance Curve
  • Where to Go from Here
  • Notes
  • Chapter 4 The Single Most Important Measurement in Cybersecurity
  • The Analysis Placebo: Why We Can't Trust Opinion Alone
  • How You Have More Data than You Think
  • When Algorithms Beat Experts
  • Tools for Improving the Human Component
  • Summary and Next Steps
  • Notes
  • Chapter 5 Risk Matrices, Lie Factors, Misconceptions, and Other Obstacles to Measuring Risk
  • Scanning the Landscape: A Survey of Cybersecurity Professionals
  • What Color Is Your Risk? The Ubiquitous-and Risky-Risk Matrix
  • Exsupero Ursus and Other Fallacies
  • Communication and Consensus Objections
  • Conclusion
  • Notes
  • Part II Evolving the Model of Cybersecurity Risk
  • Chapter 6 Decompose It: Unpacking the Details
  • Decomposing the Simple One-for-One Substitution Model.
  • More Decomposition Guidelines: Clear, Observable, Useful
  • A Hard Decomposition: Reputation Damage
  • Conclusion
  • Notes
  • Chapter 7 Calibrated Estimates: How Much Do You Know Now?
  • Introduction to Subjective Probability
  • Calibration Exercise
  • More Hints for Controlling Overconfidence
  • Conceptual Obstacles to Calibration
  • The Effects of Calibration
  • Beyond Initial Calibration Training: More Methods for Improving Subjective Judgment
  • Notes
  • Answers to Trivia Questions for Calibration Exercise
  • Chapter 8 Reducing Uncertainty with Bayesian Methods
  • A Brief Introduction to Bayes and Probability Theory
  • An Example from Little Data: Does Multifactor Authentication Work?
  • Other Ways Bayes Applies
  • Notes
  • Chapter 9 Some Powerful Methods Based on Bayes
  • Computing Frequencies with (Very) Few Data Points: The Beta Distribution
  • Decomposing Probabilities with Many Conditions
  • Reducing Uncertainty Further and When to Do It
  • More Advanced Modeling Considerations
  • Wrapping Up Bayes
  • Notes
  • Part III Cybersecurity Risk Management for the Enterprise
  • Chapter 10 Toward Security Metrics Maturity
  • Introduction: Operational Security Metrics Maturity Model
  • Sparse Data Analytics
  • Functional Security Metrics
  • Functional Security Metrics Applied: BOOM!
  • Wait-Time Baselines
  • Security Data Marts
  • Prescriptive Analytics
  • Notes
  • Chapter 11 How Well Are My Security Investments Working Together?
  • Security Metrics with the Modern Data Stack
  • Modeling for Security Business Intelligence
  • Addressing BI Concerns
  • Just the Facts: What Is Dimensional Modeling, and Why Do I Need It?
  • Dimensional Modeling Use Case: Advanced Data Stealing Threats
  • Modeling People Processes
  • Conclusion
  • Notes
  • Chapter 12 A Call to Action: How to Roll Out Cybersecurity Risk Management
  • Establishing the CSRM Strategic Charter.
  • Organizational Roles and Responsibilities for CSRM
  • Getting Audit to Audit
  • What the Cybersecurity Ecosystem Must Do to Support You
  • Integrating CSRM with the Rest of the Enterprise
  • Can We Avoid the Big One?
  • Appendix A Selected Distributions
  • Distribution Name: Triangular
  • Distribution Name: Binary
  • Distribution Name: Normal
  • Distribution Name: Lognormal
  • Distribution Name: Beta
  • Distribution Name: Power Law
  • Appendix B Guest Contributors
  • Decision Analysis to Support Ransomware Cybersecurity Risk Management
  • Bayesian Networks: One Solution for Specific Challenges in Building ML Systems in Cybersecurity
  • The Flaw of Averages in Cyber Security
  • Botnets
  • Password Hacking
  • How Catastrophe Modeling Can Be Applied to Cyber Risk
  • Notes
  • Index
  • EULA.