Crystallization of organic compounds an industrial perspective

Based on the authors hands-on experiences as process engineers, through the use of case studies and examples of crystallization processes, ranging from laboratory development through manufacturing scale-up, this book guides readers through the practical applications of crystallization and emphasises...

Descripción completa

Detalles Bibliográficos
Otros Autores: Tung, Hsien-Hsin, 1955- author (author), Paul, Edward L., author, Midler, Michael, 1936-2023, author, McCauley, James A., author
Formato: Libro electrónico
Idioma:Inglés
Publicado: Hoboken, N.J. : John Wiley & Sons, Inc [2024]
Edición:Second edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009757914706719
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright Page
  • Contents
  • Preface
  • Chapter 1 Introduction to Crystallization
  • 1.1 Crystal Properties and Polymorphs (Chapters 2 and 3)
  • 1.2 NUCLEATION AND GROWTH KINETICS (CHAPTER 4)
  • 1.3 MIXING AND SCALE-UP (CHAPTER 5)
  • 1.4 Critical Issues and Quality by Design (Chapter 6)
  • 1.4.1 Critical Issues
  • 1.4.2 Design of Experiment
  • 1.5 Crystallization Process Options (Chapters 7-10)
  • 1.5.1 Cooling (Chapter 7)
  • 1.5.2 Evaporation Solvent (Chapter 8)
  • 1.5.3 Antisolvent Addition (Chapter 9)
  • 1.5.4 Reactive Crystallization (Chapter 10)
  • 1.6 Downstream Operations (Chapters 11 And 12)
  • 1.7 Special Applications (Chapter 13)
  • Chapter 2 Properties
  • 2.1 Solubility
  • 2.1.1 Free Energy-Composition Phase Diagram
  • 2.1.2 Temperature
  • 2.1.3 Solvent
  • 2.1.4 Impurities
  • 2.1.5 Chemical and Physical Structure, Salt and Co-Crystal Form
  • 2.1.6 Solubility Measurement and Prediction
  • 2.1.7 Significance of Crystallization
  • 2.2 Supersaturation, Metastable Zone, and Induction Time
  • 2.2.1 Free Energy-Composition Phase Diagram
  • 2.2.2 Factors Affecting Metastable Zone Width and Induction Time
  • 2.2.3 Measurement and Prediction
  • 2.2.4 Significance of Crystallization
  • 2.3 Oil, Amorphous, and Crystalline States
  • 2.3.1 Phase Diagram
  • 2.3.2 Measurement
  • 2.3.3 Significance to Crystallization
  • 2.4 Polymorphism
  • 2.4.1 Phase Diagram
  • 2.4.2 Measurement and Prediction
  • 2.4.3 Significance to Crystallization and Downstream Operations
  • 2.5 Solvate
  • 2.5.1 Phase Diagram
  • 2.5.2 Measurement and Prediction
  • 2.5.3 Significance to Crystallization and Downstream Operations
  • 2.6 Solid Compound, Solid Solution, and Solid Mixture
  • 2.6.1 Phase Diagram
  • 2.6.2 Measurement and Prediction
  • 2.6.3 Significance to Crystallization
  • 2.7 Inclusion and Occlusion
  • 2.7.1 Mechanism
  • 2.7.2 Measurement.
  • 2.7.3 Significance to Crystallization and Downstream Operations
  • 2.8 Adsorption, Hygroscopicity, and Deliquesce
  • 2.8.1 Phase Diagram
  • 2.8.2 Measurement
  • 2.8.3 Significance to Crystallization and Downstream Operations
  • 2.9 Crystal Morphology
  • 2.9.1 General Observations
  • 2.9.2 Measurement and Prediction
  • 2.9.3 Significance to Crystallization and Downstream Operations
  • 2.10 Partical Size Distribution and Surface Area
  • 2.10.1 Particle Distribution Definition
  • 2.10.2 Measurement
  • 2.10.3 Significance to Crystallization and Downstream Operations
  • Chapter 3 Polymorphism
  • 3.1 Phase Rule
  • 3.2 Phase Transition
  • 3.2.1 Enantiotropy and Monotropy
  • 3.2.2 Metastable Equilibrium and Suspended Transformation
  • 3.2.3 Measurement
  • 3.3 Prediction of Crystal Structure and its Formation
  • 3.3.1 Equilibrium Approach
  • 3.3.2 Kinetic Approach
  • 3.4 Selection and Screening of Crystal Forms
  • 3.4.1 Selection Criteria
  • 3.4.2 Candidates for Forming Salts and Co-crystals
  • 3.4.3 High Throughput and Process-Based Screening
  • 3.5 Examples
  • EXAMPLE 3.1
  • EXAMPLE 3.2
  • EXAMPLE 3.3
  • EXAMPLE 3.4
  • EXAMPLE 3.5
  • EXAMPLE 3.6
  • EXAMPLE 3.7
  • EXAMPLE 3.8
  • EXAMPLE 3.9
  • Chapter 4 Kinetics
  • 4.1 SUPERSATURATION AND RATE PROCESSES
  • 4.2 Nucleation
  • 4.2.1 Homogeneous Nucleation
  • 4.2.2 Heterogeneous Nucleation
  • 4.2.3 Secondary Nucleation
  • 4.3 Crystal Growth and Agglomeration
  • 4.3.1 Crystal Growth Mechanisms
  • 4.3.2 Agglomeration Mechanism
  • 4.3.3 Measurement of Crystal Growth Rate
  • 4.3.4 Crystal Population Balance
  • 4.4 Nucleate/Seed Aging and Ostwald Ripening
  • 4.5 DELIVERED PRODUCT: PURITY, CYSTAL FORM, SIZE AND MORPHOLOGY, AND CHEMICAL and PHYSICAL STABILITY
  • 4.6 Design of Experiment (DOE)-Model-Based Approach
  • 4.7 Model-Free Feedback Control
  • Chapter 5 Mixing and Crystallization
  • 5.1 INTRODUCTION.
  • 5.2 Mixing Considerations and Factors
  • 5.2.1 Mixing Time
  • 5.2.2 Mixing Intensity
  • 5.2.3 Mixing Distribution
  • 5.3 Mixing Effects on Nucleation
  • 5.3.1 Primary Nucleation
  • 5.3.2 Secondary Nucleation and Particle Breakage
  • 5.3.3 Damkoehler Number for Nucleation
  • 5.3.4 Scale-Up of Nucleation-Based Processes
  • 5.4 Mixing Effects on Crystal Growth
  • 5.4.1 Mass Transfer Rate
  • 5.4.2 Da Number for Crystallization
  • 5.4.3 Conflicting Mixing Effects
  • 5.4.4 Experimentation on Mixing Effects
  • 5.4.5 Effects of Mixing on PSD
  • 5.5 Mixing Distribution and Scale-Up
  • 5.5.1 Power
  • 5.5.2 Off-Bottom Suspension
  • 5.6 Crystallization Equipment
  • 5.6.1 Stirred Vessels
  • 5.6.2 Fluidized Bed Crystallizer
  • 5.6.3 Impinging Jet Crystallizer
  • 5.7 Process Design and Examples
  • EXAMPLE 5.1
  • EXAMPLE 5.2
  • Chapter 6 Critical Issues and Quality by Design
  • 6.1 Quality By Design
  • 6.2 Basic Properties
  • 6.2.1 Solubility and Crystal Forms
  • 6.2.2 Particle Size and Morphology
  • 6.3 Seed
  • 6.3.1 Determination of Seed Form, Size, and Quantity
  • 6.3.2 Effectiveness of Seeding
  • 6.4 Supersaturation
  • 6.4.1 Generation of Supersaturation
  • 6.4.2 Oiling Out, Agglomeration/Aggregation
  • 6.4.3 Nucleation
  • 6.4.4 Crystal Growth
  • 6.5 Mixing and Scale-Selection of Equipment and Operating Procedures
  • 6.5.1 Stirred Vessels
  • 6.5.2 In-line Mixers
  • 6.5.3 Fluidized Bed
  • 6.6 Strategic Considerations for Crystallization Process Development
  • 6.7 Summary of Critical Issues
  • Chapter 7 Cooling Crystallization
  • 7.1 Batch Operation
  • 7.1.1 Rate of Cooling
  • 7.1.2 Metastable Region
  • 7.1.3 Seeding Versus Spontaneous Nucleation
  • 7.1.4 Mixing and Mass Transfer
  • 7.1.5 Solvent
  • 7.1.6 Impurities (Dissolved and Undissolved)
  • 7.2 Continuous Operations
  • 7.2.1 The Attraction of Continuous Processing.
  • 7.2.2 Operating Strategy for Continuous Cooling Crystallizers
  • 7.2.3 Plug Flow and Cascade Operation
  • 7.2.4 Fluidized Bed Continuous Cooling Crystallizer Designs
  • 7.3 Process Design-Examples
  • EXAMPLE 7.1
  • EXAMPLE 7.2
  • EXAMPLE 7.3
  • EXAMPLE 7.4
  • EXAMPLE 7.5
  • EXAMPLE 7.6
  • Chapter 8 Evaporative Crystallization
  • 8.1 INTRODUCTION
  • 8.2 Solubility Diagrams
  • 8.2.1 Increasing Solubility
  • 8.2.2 Decreasing Solubility
  • 8.2.3 Change in Solvent
  • 8.3 FACTORS AFFECTING NUCLEATION AND GROWTH
  • 8.4 Scale-Up
  • 8.5 Equipment
  • 8.5.1 Heat Transfer
  • 8.5.2 Overconcentration
  • 8.5.3 Combination of Evaporation and Cooling
  • 8.6 Process Design and Examples
  • EXAMPLE 8.1
  • EXAMPLE 8.2
  • EXAMPLE 8.3
  • Chapter 9 Anti-solvent Crystallization
  • 9.1 Operation
  • 9.1.1 Normal Mode of Addition
  • 9.1.2 Reverse Addition
  • 9.1.3 Simultaneous Mode of Addition
  • 9.1.4 Addition Strategy
  • 9.1.5 Seeding
  • 9.2 IN-LINE MIXING CRYSTALLIZATION
  • 9.3 Process Design and Examples
  • EXAMPLE 9.1
  • EXAMPLE 9.2
  • EXAMPLE 9.3
  • EXAMPLE 9.4
  • EXAMPLE 9.5
  • EXAMPLE 9.6
  • EXAMPLE 9.7
  • Chapter 10 Reactive Crystallization
  • 10.1 INTRODUCTION
  • 10.1.1 Utilization
  • 10.1.2 Literature
  • 10.2 Control of Particle Size
  • 10.2.1 Controlling for Growth
  • 10.3 Key Issues in Organic Reactive Crystallization
  • 10.3.1 Mixing Issues
  • 10.3.2 Mixing and Growth
  • 10.3.3 Induction Time and Nucleation
  • 10.3.4 Supersaturation Control
  • 10.3.5 Seeding
  • 10.3.6 Crystal Growth
  • 10.3.7 Impurities/Additives
  • 10.3.8 Secondary Effects
  • 10.4 Creation of Fine Particles-In-Line Reactive Crystallization
  • 10.5 Process Design and Scale-Up
  • EXAMPLE 10.1
  • EXAMPLE 10.2
  • EXAMPLE 10.3
  • EXAMPLE 10.4
  • Chapter 11 Filtration
  • 11.1 INTRODUCTION
  • 11.2 BASIC PROPERTIES
  • 11.2.1 Particle Size
  • 11.2.2 Filter Medium
  • 11.2.3 Wash Solvents.
  • 11.2.4 Temperature
  • 11.3 KINETICS
  • 11.3.1 Filtrate Concentration Profile During Filtration/Washing
  • 11.3.2 Filtration and Cake Wash Protocol
  • 11.3.3 Filtration Model
  • 11.3.4 Settling Rate vs Filtration Rate
  • 11.4 process design and scale-up
  • 11.4.1 Agitated Filter Dryer
  • 11.4.2 Centrifuge Filter
  • 11.4.3 Other Operation Complications
  • Chapter 12 Drying
  • 12.1 INTRODUCTION
  • 12.2 BASIC PROPERTIES
  • 12.2.1 Vapor-Liquid Equilibrium
  • 12.2.2 Solvation and Desolvation
  • 12.2.3 Hardness and Brittleness of Solid Particles
  • 12.2.4 Agglomerates and Granules of Solid Particles
  • 12.3 KINETICS
  • 12.3.1 Drying Profiles
  • 12.3.2 Particle Fracture and Agglomeration
  • 12.3.3 Inter-Relationship Between Drying Stage and Particle Behavior
  • 12.4 PROCESS DESIGN AND SCALE-UP
  • 12.4.1 Process Design
  • 12.4.2 Scale-up
  • Chapter 13 Special Applications
  • 13.1 INTRODUCTION
  • 13.2 CRYSTALLIZATION WITH SUPERCRITICAL FLUIDS
  • 13.3 Resolution of Stereo-Isomers
  • 13.3.1 Option 1: Use of a Chiral Additive to Create a Diastereoisomeric Set of Compounds
  • 13.3.2 Option 2: Chiral Chemistry to Improve Reaction Chiral Selectivity of the Desired Isomer
  • 13.3.3 Option 3: Kinetic and Dynamic Resolution
  • 13.3.4 Option 4: Use of Chromatography, Membrane, Enzyme, or Other Separation Technology
  • 13.4 WET MILLS IN CRYSTALLIZATION
  • 13.5 COMPUTATIONAL FLUID DYNAMICS IN CRYSTALLIZATION
  • 13.6 Solid Dispersion-Crystalline and/or Amorphous Drugs
  • 13.7 Process Design and Examples
  • EXAMPLE 13.1
  • EXAMPLE 13.2
  • EXAMPLE 13.3
  • EXAMPLE 13.4
  • EXAMPLE 13.5
  • EXAMPLE 13.6
  • EXAMPLE 13.7
  • References
  • Index
  • EULA.