Bayesian networks with examples in R
Otros Autores: | , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Boca Raton, Florida ; London, England ; New York :
CRC Press
[2022]
|
Edición: | 2nd ed |
Colección: | Chapman and Hall/CRC Texts in Statistical Science
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009757912406719 |
Tabla de Contenidos:
- Cover
- Half Title
- Series Page
- Title Page
- Copyright Page
- Dedication
- Contents
- Preface to the Second Edition
- Preface to the First Edition
- 1. The Discrete Case: Multinomial Bayesian Networks
- 1.1. Introductory Example: Train-Use Survey
- 1.2. Graphical Representation
- 1.3. Probabilistic Representation
- 1.4. Estimating the Parameters: Conditional Probability Tables
- 1.5. Learning the DAG Structure: Tests and Scores
- 1.5.1. Conditional Independence Tests
- 1.5.2. Network Scores
- 1.6. Using Discrete Bayesian Networks
- 1.6.1. Using the DAG Structure
- 1.6.2. Using the Conditional Probability Tables
- 1.6.2.1. Exact Inference
- 1.6.2.2. Approximate Inference
- 1.7. Plotting Discrete Bayesian Networks
- 1.7.1. Plotting DAGs
- 1.7.2. Plotting Conditional Probability Distributions
- 1.8. Further Reading
- 2. The Continuous Case: Gaussian Bayesian Networks
- 2.1. Introductory Example: Crop Analysis
- 2.2. Graphical Representation
- 2.3. Probabilistic Representation
- 2.4. Estimating the Parameters: Correlation Coefficients
- 2.5. Learning the DAG Structure: Tests and Scores
- 2.5.1. Conditional Independence Tests
- 2.5.2. Network Scores
- 2.6. Using Gaussian Bayesian Networks
- 2.6.1. Exact Inference
- 2.6.2. Approximate Inference
- 2.7. Plotting Gaussian Bayesian Networks
- 2.7.1. Plotting DAGs
- 2.7.2. Plotting Conditional Probability Distributions
- 2.8. More Properties
- 2.9. Further Reading
- 3. The Mixed Case: Conditional Gaussian Bayesian Networks
- 3.1. Introductory Example: Healthcare Costs
- 3.2. Graphical and Probabilistic Representation
- 3.3. Estimating the Parameters: Mixtures of Regressions
- 3.4. Learning the DAG Structure: Tests and Scores
- 3.5. Using Conditional Gaussian Bayesian Networks
- 3.6. Further Reading
- 4. Time Series: Dynamic Bayesian Networks.
- 4.1. Introductory Example: Domotics
- 4.2. Graphical Representation
- 4.3. Probabilistic Representation
- 4.4. Learning a Dynamic Bayesian Network
- 4.5. Using Dynamic Bayesian Networks
- 4.6. Plotting Dynamic Bayesian Networks
- 4.7. Further Reading
- 5. More Complex Cases: General Bayesian Networks
- 5.1. Introductory Example: A&
- E Waiting Times
- 5.2. Graphical and Probabilistic Representation
- 5.3. Building the Model in Stan
- 5.3.1. Generating Data
- 5.3.2. Exploring the Variables
- 5.4. Estimating the Parameters in Stan
- 5.5. Further Reading
- 6. Theory and Algorithms for Bayesian Networks
- 6.1. Conditional Independence and Graphical Separation
- 6.2. Bayesian Networks
- 6.3. Markov Blankets
- 6.4. Moral Graphs
- 6.5. Bayesian Network Learning
- 6.5.1. Structure Learning
- 6.5.1.1. Constraint-Based Algorithms
- 6.5.1.2. Score-Based Algorithms
- 6.5.1.3. Hybrid Algorithms
- 6.5.2. Parameter Learning
- 6.6. Bayesian Network Inference
- 6.6.1. Probabilistic Reasoning and Evidence
- 6.6.2. Algorithms for Belief Updating
- 6.6.2.1. Exact Inference Algorithms
- 6.6.2.2. Approximate Inference Algorithms
- 6.7. Causal Bayesian Networks
- 6.8. Evaluating a Bayesian Network
- 6.9. Further Reading
- 7. Software for Bayesian Networks
- 7.1. An Overview of R Packages
- 7.1.1. The deal Package
- 7.1.2. The catnet Package
- 7.1.3. The pcalg Package
- 7.1.4. The abn Package
- 7.2. Stan and BUGS Software Packages
- 7.2.1. Stan: A Feature Overview
- 7.2.2. Inference Based on MCMC Sampling
- 7.3. Other Software Packages
- 7.3.1. BayesiaLab
- 7.3.2. Hugin
- 7.3.3. GeNIe
- 8. Real-World Applications of Bayesian Networks
- 8.1. Learning Protein-Signalling Networks
- 8.1.1. A Gaussian Bayesian Network
- 8.1.2. Discretising Gene Expressions
- 8.1.3. Model Averaging.
- 8.1.4. Choosing the Significance Threshold
- 8.1.5. Handling Interventional Data
- 8.1.6. Querying the Network
- 8.2. Predicting the Body Composition 1
- 8.2.1. Aim of the Study
- 8.2.2. Designing the Predictive Approach
- 8.2.2.1. Assessing the Quality of a Predictor
- 8.2.2.2. The Saturated BN
- 8.2.2.3. Convenient BNs
- 8.2.3. Looking for Candidate BNs
- 8.3. Further Reading
- A. Graph Theory
- A.1. Graphs, Nodes and Arcs
- A.2. The Structure of a Graph
- A.3. Further Reading
- B. Probability Distributions
- B.1. General Features
- B.2. Marginal and Conditional Distributions
- B.3. Discrete Distributions
- B.3.1. Binomial Distribution
- B.3.2. Multinomial Distribution
- B.3.3. Other Common Distributions
- B.3.3.1. Bernoulli Distribution
- B.3.3.2. Poisson Distribution
- B.4. Continuous Distributions
- B.4.1. Normal Distribution
- B.4.2. Multivariate Normal Distribution
- B.4.3. Other Common Distributions
- B.4.3.1. Chi-Square Distribution
- B.4.3.2 Student's t Distribution
- B.4.3.3. Beta Distribution
- B.4.3.4. Dirichlet Distribution
- B.5. Conjugate Distributions
- B.6. Further Reading
- C. A Note about Bayesian Networks
- C.1. Bayesian Networks and Bayesian Statistics
- Glossary
- Solutions
- Bibliography
- Index.