Table of Contents:
  • Intro
  • Table of contents
  • List of figures
  • List of tables
  • Abbreviations
  • Nomenclature
  • 1 Introduction
  • 1.1 State of the art in control of bipedal robots
  • 1.2 Highlights
  • 1.3 Outline
  • 2 Model of a Dynamic Bipedal Robot
  • 2.1 Single support phase model
  • 2.2 Discrete dynamic model
  • 2.3 Hybrid dynamic model
  • 3 Disturbance Rejection Control for Trajectory Tracking
  • 3.1 Robust multivariable generalized proportional integral (GPI) controller
  • 3.1.1 Model decomposition
  • 3.1.2 Partial feedback linearization
  • 3.1.3 Integral reconstructors
  • 3.2 Hybrid zero dynamics with uncertainties (HZDU)
  • 3.2.1 Derivation of HZDU
  • 3.2.2 Orbital Gait Stability Analysis for HZDU
  • 3.3 Model-based active disturbance rejection control (ADRC)
  • 3.3.1 Local coordinate transformation
  • 3.3.2 Nonlinear extended state observer (NESO)
  • 3.3.3 Feedback control law
  • 3.4 Extended hybrid zero dynamics (EHZD)
  • 3.4.1 Derivation of EHZD
  • 3.4.2 Asymptotic periodic orbits in EHZD
  • 4 Disturbance Rejection in Trajectory Generation
  • 4.1 Virtual holonomic constraints definition
  • 4.1.1 Behavioral constraints
  • 4.1.2 Nonlinear equality constraints
  • 4.1.3 Nonlinear inequality constraints
  • 4.2 Surface of virtual holonomic constraints
  • 4.3 Reset control law for support-leg exchange
  • 4.3.1 Optimal reset transition for support-leg exchange
  • 4.3.2 Smooth transition from the passive to target dynamics
  • 5 Numerical Simulations
  • 5.1 Parameters definition
  • 5.1.1 Robot parameters
  • 5.1.2 Robust multivariable GPI controller tuning
  • 5.1.3 Model-based ADRC tuning
  • 5.1.4 Trajectory generation parameters
  • 5.2 Simulation under nominal conditions
  • 5.3 Simulation over uneven terrain
  • 5.4 Simulation with external disturbances
  • 5.5 Simulation with parameter uncertainties.
  • 6 Design of the Testbed (Saurian) and Physical Experiments
  • 6.1 Mechanism design
  • 6.2 Sensors, actuators, and control hardware
  • 6.3 Walking experiments
  • 6.4 Discussion of experiments
  • 7 Concluding Remarks
  • 7.1 Summary
  • 7.1.1 Robust multivariable GPI controller for hybrid dynamical systems
  • 7.1.2 Asymptotic periodic orbits in HZDU
  • 7.1.3 Model-based ADRC for hybrid dynamical systems
  • 7.1.4 Asymptotic periodic orbits in EHZD
  • 7.1.5 Disturbance rejection in trajectory generation
  • 7.1.6 Reset control law to reject disturbances at the support-leg exchange
  • 7.1.7 Numerical simulations
  • 7.1.8 Experiments
  • 7.2 Perspectives for future studies
  • References
  • Appendix A Lagrange Formulation.