The shape of data network science, geometry-based machine learning, and topological data analysis in R

"The Shape of Data shows how to use geometry- and topology-based algorithms for machine learning. The book focuses on practical applications rather than dense mathematical concepts, with coding examples using social network data, text data, medical data, and education data."--

Detalles Bibliográficos
Otros Autores: Farrelly, Colleen, author (author), Gaba, Yaé Ulrich, author
Formato: Libro electrónico
Idioma:Inglés
Publicado: San Francisco, CA : No Starch Press [2023]
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009755144706719
Tabla de Contenidos:
  • Why geometry?
  • Introduction to network data
  • Network analysis
  • Beyond networks
  • Geometry in data science
  • Other applications of geometry in machine learning
  • Topological data analysis
  • Homotopy algorithms
  • Working with language
  • New approaches to computational solutions.