Semiconductor solar photocatalysts fundamentals and applications

Provides a timely overview of basic principles and significant advances of semiconductor-based photocatalysts for solar energy conversion Semiconductor Solar Photocatalysts: Fundamentals and Applications presents a systematic, in-depth summary of both fundamental and cutting-edge research in novel p...

Descripción completa

Detalles Bibliográficos
Otros Autores: Yu, Jiaguo, editor (editor), Li, Xin, editor, Low, Jingxiang, editor
Formato: Libro electrónico
Idioma:Inglés
Publicado: Weinheim, Germany : Wiley-VCH [2022]
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009755099206719
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright
  • Contents
  • Chapter 1 The Fundamentals of Solar Energy Photocatalysis
  • 1.1 Background
  • 1.2 History of Solar Energy Photocatalysis
  • 1.3 Fundamental Principles of Solar Energy Photocatalysis
  • 1.3.1 Basic Mechanisms for Solar Energy Photocatalysis
  • 1.3.2 Thermodynamic Requirements for Solar Energy Photocatalysis
  • 1.3.3 Dynamics Requirements for Solar Energy Photocatalysis
  • 1.4 Design, Development, and Modification of Semiconductor Photocatalysts
  • 1.4.1 Design Principles of Semiconductor Photocatalysts
  • 1.4.2 Classifications of Semiconductor Photocatalysts
  • 1.4.3 Modification Strategies of Semiconductor Photocatalysts
  • 1.4.4 Development Approaches of Novel Semiconductor Photocatalysts
  • 1.5 Processes and Evaluation of Solar Energy Photocatalysis
  • 1.5.1 Processes of Solar Energy Photocatalysis
  • 1.5.1.1 Photocatalytic Water Splitting
  • 1.5.1.2 Photocatalytic CO2 Reduction
  • 1.5.1.3 Photocatalytic Degradation
  • 1.5.2 Evaluation of Solar Energy Photocatalysis
  • 1.6 The Scope of This Book
  • Acknowledgments
  • References
  • Chapter 2 Heterojunction Systems for Photocatalysis
  • 2.1 Introduction
  • 2.2 Classification of Heterojunction Photocatalysts
  • 2.2.1 Type‐II Heterojunction Photocatalysts
  • 2.2.2 P-N Junction Photocatalysts
  • 2.2.3 Surface Junction Photocatalysts
  • 2.2.4 Direct Z‐scheme Photocatalysts
  • 2.2.5 S‐scheme Photocatalysts
  • 2.3 Evaluation of the Heterojunction Photocatalysts
  • 2.3.1 Band Structure
  • 2.3.1.1 Light Absorption Ability
  • 2.3.1.2 Reduction and Oxidation Ability
  • 2.3.1.3 Identification of Major Charge Carriers
  • 2.3.2 Charge Carrier Separation Efficiency
  • 2.3.2.1 Electrochemical Test
  • 2.3.2.2 Optical Spectroscopy
  • 2.3.3 Charge Carrier Migration Mechanism
  • 2.3.3.1 Metal Loading
  • 2.3.3.2 Reactive Oxygen Species Trapping.
  • 2.3.3.3 In Situ Irradiated XPS
  • 2.4 Applications
  • 2.4.1 Photocatalytic Water Splitting
  • 2.4.2 Photocatalytic CO2 Reduction
  • 2.4.3 Photocatalytic N2 Fixation
  • 2.4.4 Photocatalytic Environmental Remediation
  • 2.4.5 Photocatalytic Disinfection
  • 2.5 Summary and Future Perspective
  • References
  • Chapter 3 Graphene‐Based Photocatalysts
  • 3.1 Introduction
  • 3.2 Graphene and Its Derivatives
  • 3.2.1 Graphene Oxide
  • 3.2.2 Reduced Graphene Oxide
  • 3.2.3 Graphene Quantum Dot
  • 3.3 General Preparation Techniques of Graphene in Photocatalysis
  • 3.3.1 Chemical Exfoliation
  • 3.3.2 Chemical Vapor Deposition
  • 3.4 General Advantages of Graphene
  • 3.4.1 Conductor Behavior
  • 3.4.2 Photothermal Effect
  • 3.4.3 Large Specific Surface Area
  • 3.4.4 Enhancing Photostability
  • 3.4.5 Improving Nanoparticle Dispersion
  • 3.5 Characterization Methods
  • 3.5.1 Transmission Electron Microscopy
  • 3.5.2 Atomic Force Microscopy
  • 3.5.3 Raman Spectroscopy
  • 3.5.4 X‐ray Photoelectron Spectroscopy
  • 3.6 Recent Development in Graphene‐Based Photocatalysts
  • 3.6.1 Metal Oxide
  • 3.6.2 Metal Sulfide
  • 3.6.3 Non‐metal Semiconductor
  • 3.6.4 Metal‐Organic Framework
  • 3.7 Summary and Concluding Remarks
  • Acknowledgments
  • References
  • Chapter 4 Metal Sulfide Semiconductor Photocatalysts
  • 4.1 Introduction
  • 4.2 General View of Metal Sulfide Photocatalysts
  • 4.3 Synthesis of Metal Sulfide Photocatalysts
  • 4.3.1 Solution‐Based Methods
  • 4.3.1.1 Hydrothermal Method
  • 4.3.1.2 Solvothermal Method
  • 4.3.2 Chemical Bath Deposition
  • 4.3.3 Template Method
  • 4.3.4 Ion‐Exchange Method
  • 4.3.5 Other Synthesis Methods
  • 4.4 CdS‐Based Photocatalyst
  • 4.4.1 Crystal Structures and Morphology
  • 4.4.1.1 Zero‐Dimensional Structure
  • 4.4.1.2 One‐Dimensional Structure
  • 4.4.1.3 Two‐Dimensional Structure
  • 4.4.1.4 Three‐Dimensional Structure.
  • 4.4.2 Construction of CdS‐Based Nanocomposite Photocatalysts
  • 4.4.2.1 CdS‐Cocatalyst Heterojunctions
  • 4.4.2.2 CdS‐Based Type‐II Heterojunctions
  • 4.4.2.3 CdS‐Based Z‐scheme Heterojunctions
  • 4.4.2.4 CdS‐Based S‐scheme Heterojunctions
  • 4.5 In2S3‐Based Photocatalysts
  • 4.5.1 Crystal Structure and Electronic Properties
  • 4.5.2 Morphology of In2S3 Photocatalysts
  • 4.5.2.1 Zero‐Dimensional Structure
  • 4.5.2.2 One‐Dimensional Structure
  • 4.5.2.3 Two‐Dimensional Structure
  • 4.5.2.4 Three‐Dimensional Structure
  • 4.5.3 Construction of In2S3‐Based Composite Photocatalysts
  • 4.5.3.1 In2S3‐Based Type‐II Heterojunctions
  • 4.5.3.2 In2S3‐Based Direct Z‐scheme Heterojunctions
  • 4.5.3.3 In2S3‐Based Indirect Z‐scheme Heterojunctions
  • 4.6 SnS2‐Based Photocatalysts
  • 4.6.1 Morphology of SnS2 Photocatalysts
  • 4.6.2 Construction of SnS2‐Based Composite Photocatalysts
  • 4.6.2.1 Cocatalyst/SnS2 Composites
  • 4.6.2.2 SnS2‐Based Type‐II Heterojunction Composites
  • 4.6.2.3 SnS2‐Based Z‐scheme Heterojunction Composites
  • 4.7 Cu2S‐Based Photocatalysts
  • 4.7.1 Morphology of Cu2S Photocatalysts
  • 4.7.1.1 Zero‐Dimensional Structure
  • 4.7.1.2 One‐Dimensional Structure
  • 4.7.1.3 Two‐Dimensional Structure
  • 4.7.1.4 Three‐Dimensional Structure
  • 4.7.2 Construction of Cu2S‐Based Composite Photocatalysts
  • 4.7.2.1 Cu2S/Metal Oxide Photocatalysts
  • 4.7.2.2 Cu2S/Metal Sulfide Photocatalysts
  • 4.7.2.3 Cu2S/Metal Photocatalysts
  • 4.8 Other Metal Sulfide Photocatalysts
  • 4.9 Energy and Environmental Applications
  • 4.9.1 Photocatalytic H2 Production
  • 4.9.1.1 Unary Metal Sulfide Photocatalyst for H2 Production
  • 4.9.1.2 Binary Metal Sulfide‐Based Nanocomposite Photocatalysts for H2 Production
  • 4.9.1.3 Ternary Metal Sulfide‐Based Nanocomposite Photocatalysts for H2 Production
  • 4.9.2 Photoreduction of CO2.
  • 4.9.3 Photocatalytic Removal of Environmental Contamination
  • 4.9.3.1 Photocatalytic Dye Degradation
  • 4.9.3.2 Photocatalytic Reduction of Hexavalent Chromium
  • 4.10 Conclusions and Outlook
  • References
  • Chapter 5 Organic Semiconductor Photocatalysts
  • 5.1 Introduction
  • 5.2 MOFs Photocatalysts
  • 5.2.1 Synthesis of MOFs Photocatalysts
  • 5.2.2 MOFs for Photocatalytic Degradation of Pollutants
  • 5.2.3 MOFs for Photocatalytic Organic Transformation
  • 5.2.4 MOFs for Photocatalytic H2 Production from Water
  • 5.2.5 MOFs for Photocatalytic Reduction of CO2
  • 5.3 Organic Polymer Photocatalysts
  • 5.3.1 Synthesis of Organic Polymer Photocatalysts
  • 5.3.2 Organic Polymers for Photocatalytic Degradation of Pollutants
  • 5.3.3 Organic Polymers for Organic Transformation
  • 5.3.4 Organic Polymers for Photocatalytic H2 Production from Water
  • 5.3.5 Organic Polymers for Photocatalytic Reduction of CO2
  • 5.4 COFs Photocatalysts
  • 5.4.1 Synthesis of COFs Photocatalysts
  • 5.4.2 COFs for Photocatalytic Degradation of Pollutants
  • 5.4.3 COFs for Photocatalytic Organic Transformation
  • 5.4.4 COFs for Photocatalytic H2 Production from Water
  • 5.4.5 COFs for Photocatalytic Reduction of CO2
  • 5.5 Conclusions and Outlook
  • References
  • Chapter 6 Graphitic Carbon Nitride‐Based Photocatalysts
  • 6.1 Introduction
  • 6.2 Structure of g‐C3N4
  • 6.3 Preparation of g‐C3N4‐Based Photocatalysts
  • 6.3.1 Pure g‐C3N4
  • 6.3.2 g‐C3N4‐Based Composite Photocatalysts
  • 6.4 Main Photocatalytic Applications of g‐C3N4‐Based Photocatalysts
  • 6.4.1 Photocatalytic H2O Splitting for H2 Generation
  • 6.4.2 Photocatalytic CO2 Reduction for Hydrocarbon Fuel Production
  • 6.4.3 Photocatalytic N2 Fixation for Ammonia Production
  • 6.5 Strategies for Optimizing Photocatalytic Performance of g‐C3N4
  • 6.5.1 Morphology Design
  • 6.5.2 Surface Modification.
  • 6.5.3 Element Doping
  • 6.5.4 Cocatalyst Loading
  • 6.5.5 Heterojunction
  • 6.5.6 Single‐Atom Deposition
  • 6.6 Challenges and Prospects
  • References
  • Index
  • EULA.