Semiconductor solar photocatalysts fundamentals and applications
Provides a timely overview of basic principles and significant advances of semiconductor-based photocatalysts for solar energy conversion Semiconductor Solar Photocatalysts: Fundamentals and Applications presents a systematic, in-depth summary of both fundamental and cutting-edge research in novel p...
Otros Autores: | , , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Weinheim, Germany :
Wiley-VCH
[2022]
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009755099206719 |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright
- Contents
- Chapter 1 The Fundamentals of Solar Energy Photocatalysis
- 1.1 Background
- 1.2 History of Solar Energy Photocatalysis
- 1.3 Fundamental Principles of Solar Energy Photocatalysis
- 1.3.1 Basic Mechanisms for Solar Energy Photocatalysis
- 1.3.2 Thermodynamic Requirements for Solar Energy Photocatalysis
- 1.3.3 Dynamics Requirements for Solar Energy Photocatalysis
- 1.4 Design, Development, and Modification of Semiconductor Photocatalysts
- 1.4.1 Design Principles of Semiconductor Photocatalysts
- 1.4.2 Classifications of Semiconductor Photocatalysts
- 1.4.3 Modification Strategies of Semiconductor Photocatalysts
- 1.4.4 Development Approaches of Novel Semiconductor Photocatalysts
- 1.5 Processes and Evaluation of Solar Energy Photocatalysis
- 1.5.1 Processes of Solar Energy Photocatalysis
- 1.5.1.1 Photocatalytic Water Splitting
- 1.5.1.2 Photocatalytic CO2 Reduction
- 1.5.1.3 Photocatalytic Degradation
- 1.5.2 Evaluation of Solar Energy Photocatalysis
- 1.6 The Scope of This Book
- Acknowledgments
- References
- Chapter 2 Heterojunction Systems for Photocatalysis
- 2.1 Introduction
- 2.2 Classification of Heterojunction Photocatalysts
- 2.2.1 Type‐II Heterojunction Photocatalysts
- 2.2.2 P-N Junction Photocatalysts
- 2.2.3 Surface Junction Photocatalysts
- 2.2.4 Direct Z‐scheme Photocatalysts
- 2.2.5 S‐scheme Photocatalysts
- 2.3 Evaluation of the Heterojunction Photocatalysts
- 2.3.1 Band Structure
- 2.3.1.1 Light Absorption Ability
- 2.3.1.2 Reduction and Oxidation Ability
- 2.3.1.3 Identification of Major Charge Carriers
- 2.3.2 Charge Carrier Separation Efficiency
- 2.3.2.1 Electrochemical Test
- 2.3.2.2 Optical Spectroscopy
- 2.3.3 Charge Carrier Migration Mechanism
- 2.3.3.1 Metal Loading
- 2.3.3.2 Reactive Oxygen Species Trapping.
- 2.3.3.3 In Situ Irradiated XPS
- 2.4 Applications
- 2.4.1 Photocatalytic Water Splitting
- 2.4.2 Photocatalytic CO2 Reduction
- 2.4.3 Photocatalytic N2 Fixation
- 2.4.4 Photocatalytic Environmental Remediation
- 2.4.5 Photocatalytic Disinfection
- 2.5 Summary and Future Perspective
- References
- Chapter 3 Graphene‐Based Photocatalysts
- 3.1 Introduction
- 3.2 Graphene and Its Derivatives
- 3.2.1 Graphene Oxide
- 3.2.2 Reduced Graphene Oxide
- 3.2.3 Graphene Quantum Dot
- 3.3 General Preparation Techniques of Graphene in Photocatalysis
- 3.3.1 Chemical Exfoliation
- 3.3.2 Chemical Vapor Deposition
- 3.4 General Advantages of Graphene
- 3.4.1 Conductor Behavior
- 3.4.2 Photothermal Effect
- 3.4.3 Large Specific Surface Area
- 3.4.4 Enhancing Photostability
- 3.4.5 Improving Nanoparticle Dispersion
- 3.5 Characterization Methods
- 3.5.1 Transmission Electron Microscopy
- 3.5.2 Atomic Force Microscopy
- 3.5.3 Raman Spectroscopy
- 3.5.4 X‐ray Photoelectron Spectroscopy
- 3.6 Recent Development in Graphene‐Based Photocatalysts
- 3.6.1 Metal Oxide
- 3.6.2 Metal Sulfide
- 3.6.3 Non‐metal Semiconductor
- 3.6.4 Metal‐Organic Framework
- 3.7 Summary and Concluding Remarks
- Acknowledgments
- References
- Chapter 4 Metal Sulfide Semiconductor Photocatalysts
- 4.1 Introduction
- 4.2 General View of Metal Sulfide Photocatalysts
- 4.3 Synthesis of Metal Sulfide Photocatalysts
- 4.3.1 Solution‐Based Methods
- 4.3.1.1 Hydrothermal Method
- 4.3.1.2 Solvothermal Method
- 4.3.2 Chemical Bath Deposition
- 4.3.3 Template Method
- 4.3.4 Ion‐Exchange Method
- 4.3.5 Other Synthesis Methods
- 4.4 CdS‐Based Photocatalyst
- 4.4.1 Crystal Structures and Morphology
- 4.4.1.1 Zero‐Dimensional Structure
- 4.4.1.2 One‐Dimensional Structure
- 4.4.1.3 Two‐Dimensional Structure
- 4.4.1.4 Three‐Dimensional Structure.
- 4.4.2 Construction of CdS‐Based Nanocomposite Photocatalysts
- 4.4.2.1 CdS‐Cocatalyst Heterojunctions
- 4.4.2.2 CdS‐Based Type‐II Heterojunctions
- 4.4.2.3 CdS‐Based Z‐scheme Heterojunctions
- 4.4.2.4 CdS‐Based S‐scheme Heterojunctions
- 4.5 In2S3‐Based Photocatalysts
- 4.5.1 Crystal Structure and Electronic Properties
- 4.5.2 Morphology of In2S3 Photocatalysts
- 4.5.2.1 Zero‐Dimensional Structure
- 4.5.2.2 One‐Dimensional Structure
- 4.5.2.3 Two‐Dimensional Structure
- 4.5.2.4 Three‐Dimensional Structure
- 4.5.3 Construction of In2S3‐Based Composite Photocatalysts
- 4.5.3.1 In2S3‐Based Type‐II Heterojunctions
- 4.5.3.2 In2S3‐Based Direct Z‐scheme Heterojunctions
- 4.5.3.3 In2S3‐Based Indirect Z‐scheme Heterojunctions
- 4.6 SnS2‐Based Photocatalysts
- 4.6.1 Morphology of SnS2 Photocatalysts
- 4.6.2 Construction of SnS2‐Based Composite Photocatalysts
- 4.6.2.1 Cocatalyst/SnS2 Composites
- 4.6.2.2 SnS2‐Based Type‐II Heterojunction Composites
- 4.6.2.3 SnS2‐Based Z‐scheme Heterojunction Composites
- 4.7 Cu2S‐Based Photocatalysts
- 4.7.1 Morphology of Cu2S Photocatalysts
- 4.7.1.1 Zero‐Dimensional Structure
- 4.7.1.2 One‐Dimensional Structure
- 4.7.1.3 Two‐Dimensional Structure
- 4.7.1.4 Three‐Dimensional Structure
- 4.7.2 Construction of Cu2S‐Based Composite Photocatalysts
- 4.7.2.1 Cu2S/Metal Oxide Photocatalysts
- 4.7.2.2 Cu2S/Metal Sulfide Photocatalysts
- 4.7.2.3 Cu2S/Metal Photocatalysts
- 4.8 Other Metal Sulfide Photocatalysts
- 4.9 Energy and Environmental Applications
- 4.9.1 Photocatalytic H2 Production
- 4.9.1.1 Unary Metal Sulfide Photocatalyst for H2 Production
- 4.9.1.2 Binary Metal Sulfide‐Based Nanocomposite Photocatalysts for H2 Production
- 4.9.1.3 Ternary Metal Sulfide‐Based Nanocomposite Photocatalysts for H2 Production
- 4.9.2 Photoreduction of CO2.
- 4.9.3 Photocatalytic Removal of Environmental Contamination
- 4.9.3.1 Photocatalytic Dye Degradation
- 4.9.3.2 Photocatalytic Reduction of Hexavalent Chromium
- 4.10 Conclusions and Outlook
- References
- Chapter 5 Organic Semiconductor Photocatalysts
- 5.1 Introduction
- 5.2 MOFs Photocatalysts
- 5.2.1 Synthesis of MOFs Photocatalysts
- 5.2.2 MOFs for Photocatalytic Degradation of Pollutants
- 5.2.3 MOFs for Photocatalytic Organic Transformation
- 5.2.4 MOFs for Photocatalytic H2 Production from Water
- 5.2.5 MOFs for Photocatalytic Reduction of CO2
- 5.3 Organic Polymer Photocatalysts
- 5.3.1 Synthesis of Organic Polymer Photocatalysts
- 5.3.2 Organic Polymers for Photocatalytic Degradation of Pollutants
- 5.3.3 Organic Polymers for Organic Transformation
- 5.3.4 Organic Polymers for Photocatalytic H2 Production from Water
- 5.3.5 Organic Polymers for Photocatalytic Reduction of CO2
- 5.4 COFs Photocatalysts
- 5.4.1 Synthesis of COFs Photocatalysts
- 5.4.2 COFs for Photocatalytic Degradation of Pollutants
- 5.4.3 COFs for Photocatalytic Organic Transformation
- 5.4.4 COFs for Photocatalytic H2 Production from Water
- 5.4.5 COFs for Photocatalytic Reduction of CO2
- 5.5 Conclusions and Outlook
- References
- Chapter 6 Graphitic Carbon Nitride‐Based Photocatalysts
- 6.1 Introduction
- 6.2 Structure of g‐C3N4
- 6.3 Preparation of g‐C3N4‐Based Photocatalysts
- 6.3.1 Pure g‐C3N4
- 6.3.2 g‐C3N4‐Based Composite Photocatalysts
- 6.4 Main Photocatalytic Applications of g‐C3N4‐Based Photocatalysts
- 6.4.1 Photocatalytic H2O Splitting for H2 Generation
- 6.4.2 Photocatalytic CO2 Reduction for Hydrocarbon Fuel Production
- 6.4.3 Photocatalytic N2 Fixation for Ammonia Production
- 6.5 Strategies for Optimizing Photocatalytic Performance of g‐C3N4
- 6.5.1 Morphology Design
- 6.5.2 Surface Modification.
- 6.5.3 Element Doping
- 6.5.4 Cocatalyst Loading
- 6.5.5 Heterojunction
- 6.5.6 Single‐Atom Deposition
- 6.6 Challenges and Prospects
- References
- Index
- EULA.