Modern Deep Learning for Tabular Data Novel Approaches to Common Modeling Problems
Deep learning is one of the most powerful tools in the modern artificial intelligence landscape. While having been predominantly applied to highly specialized image, text, and signal datasets, this book synthesizes and presents novel deep learning approaches to a seemingly unlikely domain – tabular...
Other Authors: | , |
---|---|
Format: | eBook |
Language: | Inglés |
Published: |
Berkeley, CA :
Apress
2023.
|
Edition: | 1st ed. 2023. |
Subjects: | |
See on Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009755097706719 |
Table of Contents:
- Part 1: Machine Learning and Tabular Data
- Chapter 1 – Introduction to Machine Learning
- Chapter 2 – Data Tools
- Part 2: Applied Deep Learning Architectures
- Chapter 3 – Artificial Neural Networks
- Chapter 4 – Convolutional Neural Networks
- Chapter 5 – Recurrent Neural Networks
- Chapter 6 – Attention Mechanism
- Chapter 7 – Tree-based Neural Networks
- Part 3: Deep Learning Design and Tools
- Chapter 8 – Autoencoders
- Chapter 9 – Data Generation
- Chapter 10 – Meta-optimization
- Chapter 11 – Multi-model arrangement
- Chapter 12 – Deep Learning Interpretability
- Appendix A.