The technology of discovery radioisotope thermoelectric generators and thermoelectric technologies for space exploration

"Radioisotope Thermoelectric Generators (RTGs) produce continuous, quiet electrical power for spacecraft exploring our solar system and the space beyond. These generators use thermoelectric technologies to convert heat produced by the natural decay of radioisotopes into electrical power. Two le...

Descripción completa

Detalles Bibliográficos
Otros Autores: Woerner, David Friedrich, author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Hoboken, New Jersey : Wiley [2023]
Colección:JPL space science and technology series.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009752740006719
Tabla de Contenidos:
  • Intro
  • Table of Contents
  • Title Page
  • Copyright Page
  • Foreward
  • Note From the Series Editor
  • Preface
  • Authors
  • Reviewers
  • Acknowledgments
  • Glossary
  • List of Acronyms and Abbreviations
  • 1 The History of the Invention of Radioisotope Thermoelectric Generators (RTGs) for Space Exploration
  • References
  • 2 The History of the United States's Flight and Terrestrial RTGs
  • 2.1 Flight RTGS
  • 2.2 Unflown Flight RTGs
  • 2.3 Terrestrial RTGs
  • 2.4 Conclusion
  • References
  • 3 US Space Flights Enabled by RTGs
  • 3.1 SNAP‐3B Missions (1961)
  • 3.2 SNAP‐9A Missions (1963-1964)
  • 3.3 SNAP‐19 Missions (1968-1975)
  • 3.4 SNAP‐27 Missions (1969-1972)
  • 3.5 Transit‐RTG Mission (1972)
  • 3.6 MHW‐RTG Missions (1976-1977)
  • 3.7 GPHS‐RTG Missions (1989-2006)
  • 3.8 MMRTG Missions: (2011‐Present (2021))
  • 3.9 Discussion of Flight Frequency
  • 3.10 Summary of US Missions Enabled by RTGs
  • References
  • 4 Nuclear Systems Used for Space Exploration by Other Countries
  • 4.1 Soviet Union1
  • 4.2 China
  • References
  • 5 Nuclear Physics, Radioisotope Fuels, and Protective Components
  • 5.1 Introduction
  • 5.2 Introduction to Nuclear Physics
  • 5.3 Historic Radioisotope Fuels
  • 5.4 Producing Modern PuO2
  • 5.5 Fuel, cladding, and encapsulations for modern
  • 5.6 Summary
  • References
  • 6 A Primer on the Underlying Physics in Thermoelectrics
  • 6.1 Underlying Physics in Thermoelectric Materials
  • 6.2 Thermoelectric Theories and Limitations
  • 6.3 Thermal Conductivity and Phonon Scattering
  • References
  • 7 End‐to‐End Assembly and Pre‐flight Operations for RTGs
  • 7.1 GPHS Assembly
  • 7.2 RTG Fueling and Testing
  • 7.3 RTG Delivery, Spacecraft Checkout, and RTG Integration for Flight
  • References
  • 8 Lifetime Performance of Spaceborne RTGs
  • 8.1 Introduction
  • 8.2 History of RTG Performance at a Glance.
  • 8.3 RTG Performance by Generator Type
  • References
  • 9 Modern Analysis Tools and Techniques for RTGs
  • 9.1 Analytical Tools for Evaluating Performance Degradation and Extrapolating Future Power
  • 9.2 Effects of Thermal Inventory on Lifetime Performance
  • 9.3 (Design) Life Performance Prediction
  • 9.4 Radioisotope Power System Dose Estimation Tool (RPS‐DET)
  • References
  • 10 Advanced US RTG Technologies in Development
  • 10.1 Introduction
  • 10.2 Skutterudite‐based Thermoelectric Converter Technology for a Potential MMRTG Retrofit
  • 10.3 Next Generation RTG Technology Evolution
  • 10.4 Considerations for Emerging Commercial RTG Concepts
  • References
  • Index
  • End User License Agreement.