RF Circuits for 5G Applications Designing with MmWave Circuitry

Detalles Bibliográficos
Otros Autores: Singh, Sangeeta, PhD, editor (editor)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Hoboken, NJ : John Wiley & Sons, Inc., and Scrivener Publishing LLC [2023]
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009752739706719
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright Page
  • Contents
  • Preface
  • Part I: 5G Communication
  • Chapter 1 Needs and Challenges of the 5th Generation Communication Network
  • 1.1 Introduction
  • 1.1.1 What is 5G and Do We Need 5G?
  • 1.1.2 A Brief History of Gs
  • 1.2 mmWave Spectrum, Challenges, and Opportunities
  • 1.3 Framework Level Requirements for mmWave Wireless Links
  • 1.4 Circuit Aspects
  • 1.5 Outline of the Book
  • Acknowledgement
  • References
  • Chapter 2 5G Circuits from Requirements to System Models and Analysis
  • 2.1 RF Requirements Governed by 5G System Targets
  • 2.2 Radio Spectrum and Standardization
  • 2.3 System Scalability
  • 2.4 Communication System Model for RF System Analysis
  • 2.5 System-Level RF Performance Model
  • 2.5.1 Transmitter, Receiver, Antenna Array and Transceiver Architectures for RF and Hybrid Beamforming
  • 2.6 Radio Propagation and Link Budget
  • 2.6.1 Radio Propagation Model
  • 2.6.2 Link Budgeting
  • 2.7 Multiuser Multibeam Analysis
  • 2.8 Conclusion
  • Acknowledgement
  • References
  • Chapter 3 Millimetre-Wave Beam-Space MIMO System for 5G Applications
  • 3.1 Introduction
  • 3.2 Beam-Space Massive MIMO System
  • 3.2.1 System Model
  • 3.2.2 Saleh-Valenzuela Channel Model
  • 3.3 Array Response Vector
  • 3.3.1 mmWave Beam-Space Massive (mWBSM)-MIMO System
  • 3.4 Discrete Lens Antenna Array
  • 3.5 Beam Selection Algorithm
  • 3.6 Mean Sum Assignment-Based Beam User Association
  • 3.6.1 Performance Evaluation
  • 3.7 Conclusion
  • References
  • Part II: Oscillator &amp
  • Amplifier
  • Chapter 4 Gain-Bandwidth Enhancement Techniques for mmWave Fully-Integrated Amplifiers
  • 4.1 RLC Tank
  • 4.1.1 RC Low-Pass (LP) Filter
  • 4.1.2 RLC Band-Pass (BP) Filter
  • 4.2 Coupled Resonators
  • 4.2.1 Bode-Fano (B-F) Limit
  • 4.2.2 Capacitively Coupled Resonators
  • 4.2.3 Inductively Coupled Resonators.
  • 4.2.4 Magnetically Coupled Resonators
  • 4.2.5 Magnetically and Capacitive Coupled Resonator
  • 4.2.6 Coupled Resonators Comparison
  • 4.3 Resonators Based on the Transformers
  • 4.3.1 On the Parasitic Interwinding Capacitance
  • 4.3.2 Effect of Unbalanced Capacitive Terminations
  • 4.3.3 Frequency Response Equalization
  • 4.3.4 On the Parasitic Magnetic Coupling in Multistage Amplifiers
  • 4.3.5 Extension to Impedance Transformation
  • 4.3.6 On the kQ Product
  • 4.3.7 Transformer-Based Power Dividers (PDs)
  • 4.3.8 Transformer-Based Power Combiners (PCs)
  • 4.4 Conclusion
  • Acknowledgments
  • References
  • Chapter 5 Low-Noise Amplifiers
  • 5.1 Introduction
  • 5.2 Basics of RFIC
  • 5.2.1 Voltage Gain in dB
  • 5.2.2 Power Gain in dB
  • 5.2.3 Issues in RF Design
  • 5.3 Structure of MOSFET
  • 5.4 Bandwidth Estimation Techniques
  • 5.5 Noise
  • 5.5.1 Noise in MOSFET
  • 5.6 Different Topologies of LNA
  • Conclusion
  • Acknowledgement
  • References
  • Chapter 6 Mixer Design
  • 6.1 Introduction
  • 6.2 Properties
  • 6.3 Diode Mixer
  • 6.4 Transistor Mixer
  • 6.5 Conclusion
  • Acknowledgement
  • References
  • Chapter 7 RF LC VCOs Designing
  • 7.1 Introduction
  • 7.1.1 Basic VCO Models
  • 7.1.2 Phase Noise
  • 7.1.3 Flicker Noise
  • 7.1.4 Distributed Oscillators
  • 7.2 Tuning Extension Techniques
  • 7.2.1 Varactor
  • 7.2.2 Switched Capacitors
  • 7.2.3 Switched Inductors
  • 7.2.4 Switched TLs
  • 7.2.5 4th Order Tanks and Other Techniques
  • 7.3 Conclusion
  • Acknowledgement
  • References
  • Chapter 8 RF Power Amplifiers
  • 8.1 Specification
  • 8.1.1 Efficiency
  • 8.1.2 Generic Amplifier Classes
  • 8.1.3 Heating
  • 8.1.4 Linearity
  • 8.1.5 Ruggedness
  • 8.2 Bipolar PA Design
  • 8.3 CMOS Power Amplifier Design
  • 8.3.1 Performance Parameters
  • 8.3.1.1 Linearity
  • 8.3.1.2 Gain
  • 8.3.1.3 Efficiency
  • 8.3.1.4 Output Power
  • 8.3.1.5 Power Consumption.
  • 8.3.2 Drawbacks of CMOS Power Amplifier
  • 8.3.3 Design of CMOS Power Amplifier
  • 8.3.3.1 Common Cascode PA Design
  • 8.3.3.2 Self-Bias Cascode PA Design
  • 8.3.3.3 Differential Cascode PA Design
  • 8.3.3.4 Power Combining PA Design
  • 8.4 Linearization Principles: Predistortion Technique, Phase-Correcting Feedback, Envelope Elimination and Restoration (EER), Cartesian Feedback
  • 8.4.1 Predistortion Linearization Technique
  • 8.4.2 Phase Correcting Feedback Technique
  • 8.4.3 Cartesian Feedback Technique
  • 8.4.4 Envelope Elimination and Restoration Technique
  • Acknowledgement
  • References
  • Chapter 9 RF Oscillators
  • 9.1 Introduction
  • 9.2 Specifications
  • 9.2.1 Frequency and Tuning
  • 9.2.2 Tuning Constant and Linearity
  • 9.2.3 Power Dissipation
  • 9.2.4 Phase to Noise Ratio
  • 9.2.5 Reciprocal Mixing
  • 9.2.6 Signal to Noise Degradation of FM Signals Spurious Emission
  • 9.2.7 Harmonics, I/Q Matching, Technology and Chip Area
  • 9.3 LC Oscillators
  • 9.3.1 Frequency, Tuning and Phase Noise Frequency Tuning Phase Noise to Carrier Ratio
  • 9.3.2 Topologies
  • 9.3.3 NMOS Only Cross-Coupled Structure
  • 9.3.4 RC Oscillators
  • 9.4 Design Examples
  • 9.4.1 830 MHz Monolithic LC Oscillator Circuit Design Measurements
  • 9.4.2 A 10 GHz I/Q RC Oscillator with Active Inductors
  • 9.5 Conclusion
  • Acknowledgement
  • References
  • Part III: RF Circuit Applications
  • Chapter 10 mmWave Highly-Linear Broadband Power Amplifiers
  • 10.1 Basics of PAs
  • 10.1.1 Single Transistor Amplifier
  • 10.1.2 Trade-Offs Among Power Amplifier Design Parameters (P0, PAE and Linearity)
  • 10.1.3 Harmonic Terminations and Switching Amplifiers
  • 10.1.4 Challenges at Millimeter-Wave
  • 10.2 Millimeter Wave-Based AB Class PA
  • 10.2.1 Efficiency at Power Back-Off
  • 10.2.2 Sources of AM-PM Distortion
  • 10.2.3 Distortion Cancellation Techniques.
  • 10.2.3.1 Input PMOS Varactors
  • 10.2.3.2 Complementary N-PMOS Amplifier
  • 10.2.3.3 Degeneration Inductance
  • 10.2.3.4 Harmonic Traps
  • 10.3 Design Example: A Highly Linear Wideband PA in 28 nm CMOS
  • 10.3.1 Transformer-Based Output Combiner and Inter-Stage Power Divider
  • 10.3.2 More on the kQ Product
  • 10.4 Conclusion
  • Acknowledgments
  • References
  • Chapter 11 FinFET Process Technology for RF and Millimeter Wave Applications
  • 11.1 Evaluation of FinFET Technology
  • 11.1.1 Steps of Fabrication and Process Flow of FinFET Technology
  • 11.1.2 Digital Performance
  • 11.1.3 Analog/RF Performance
  • 11.2 Distinct Properties of FinFET
  • 11.2.1 Performance with Transistor Scaling
  • 11.2.2 Nonlinear Gate Resistance by Three Dimensional Structure
  • 11.2.3 Self-Heating Effect in FinFETs
  • 11.3 Assessment of FinFET Technology for RF/mmWave Applications
  • 11.3.1 RF Performance
  • 13.3.1.1 Parasitic Extraction
  • 11.3.2 Noise Performance
  • 11.3.3 Noise Matching with Gain at the mmWave Frequency
  • 11.4 Design Process of FinFET for RF/mmWave Performance Optimization
  • 11.4.1 Cascaded Chain Design Consideration for Wireless System
  • 11.4.2 Optimization of Noise Figure with Gmax for LNA Within Self-Heat Limit
  • 11.4.3 Gain Per Power Efficiency
  • 11.4.4 Linearity for Gain and Power Efficiency
  • 11.4.5 Neutralization for mmWave Applications
  • References
  • Chapter 12 Pre-Distortion: An Effective Solution for Power Amplifier Linearization
  • 12.1 Introduction
  • 12.2 Standard Measures of Nonlinearity of Power Amplifier
  • 12.2.1 Gain Compression Point (1 dB)
  • 12.2.2 Harmonic and Intermodulation Distortion (IMD)
  • 12.2.3 Third-Order Intercept Point (TOI)
  • 12.2.4 AM/AM and AM/PM Distortion
  • 12.2.5 Adjacent Channel Power Ratio (ACPR)
  • 12.2.6 Error Vector Magnitude (EVM)
  • 12.3 What is Linearization?
  • 12.3.1 Feed Forward Linearization.
  • 12.3.2 Feedback Linearization
  • 12.3.3 Pre-Distortion Linearization
  • 12.4 Example of Analog Pre-Distortion-Based Class EFJ Power Amplifier
  • Conclusion and Future Scope
  • References
  • Chapter 13 Design of Control Circuit for Mitigation of Shadow Effect in Solar Photovoltaic System
  • 13.1 Introduction
  • 13.2 Proposed Methodology
  • 13.3 Results and Discussion
  • 13.4 Conclusion
  • Acknowledgement
  • References
  • Part IV: RF Circuit Modeling
  • Chapter 14 HBT High-Frequency Modeling and Integrated Parameter Extraction
  • 14.1 HBT High-Frequency Modeling and Integrated Parameter Extraction
  • 14.2 High-Frequency HBT Modeling
  • 14.2.1 DC and Small Signal Models
  • 14.2.2 Linearized T-Model
  • 14.2.3 Linearized Hybrid ð model
  • 14.3 Integrated Parameters Extraction
  • 14.3.1 Formulation of Integrated Parameter Extraction
  • 14.3.2 Optimization of Model
  • 14.4 Noise Model Validation
  • 14.5 Parameters Extraction of an HBT Model
  • Acknowledgement
  • References
  • Chapter 15 Non-Linear Microwave Circuit Design Using Multi-Harmonic Load-Pull Simulation Technique
  • 15.1 Introduction
  • 15.2 Multi-Harmonic Load-Pull Simulation Using Harmonic Balance
  • 15.2.1 Formulation of Multi-Harmonic Load-Pull Simulation
  • 15.2.2 Systematic Design Procedure
  • 15.3 Application of Multiharmonic Load-Pull Simulation
  • 15.3.1 Narrowband Power Amplifier Design
  • 15.3.2 Frequency Doubler Design
  • References
  • Chapter 16 Microwave RF Designing Concepts and Technology
  • 16.1 Introduction
  • 16.1.1 Gain
  • 16.1.2 Noise
  • 16.1.3 Non Linearity
  • 16.1.4 Sensitivity
  • 16.2 Microwave RF Device Technology and Characterization
  • 16.2.1 Characterization and Modeling
  • 16.2.2 Modeling
  • 16.2.3 Cut-Off Frequency
  • 16.2.4 Maximum Oscillation Frequency
  • 16.2.5 Input Limited Frequency
  • 16.2.6 Output Limited Frequency
  • 16.2.7 Maximum Available Frequency.
  • 16.2.8 Technology Choices.