Introduction to convective heat transfer a software-based approach using Maple and MATLAB

Detalles Bibliográficos
Otros Autores: Onur, Nevzat, 1950- author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Hoboken, NJ : John Wiley & Sons, Inc [2023]
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009752727306719
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright
  • Contents
  • Preface
  • About the Author
  • About the Companion Website
  • Chapter 1 Foundations of Convective Heat Transfer
  • 1.1 Fundamental Concepts
  • 1.2 Coordinate Systems
  • 1.3 The Continuum and Thermodynamic Equilibrium Concepts
  • 1.4 Velocity and Acceleration
  • 1.5 Description of a Fluid Motion: Eulerian and Lagrangian Coordinates and Substantial Derivative
  • 1.5.1 Lagrangian Approach
  • 1.5.2 Eulerian Approach
  • 1.6 Substantial Derivative
  • 1.7 Conduction Heat Transfer
  • 1.8 Fluid Flow and Heat Transfer
  • 1.9 External Flow
  • 1.9.1 Velocity Boundary Layer and Newton's Viscosity Relation
  • 1.9.2 Thermal Boundary Layer
  • 1.10 Internal Flow
  • 1.10.1 Mean Velocity
  • 1.10.2 Mean Temperature
  • 1.11 Thermal Radiation Heat Transfer
  • 1.12 The Reynolds Transport Theorem: Time Rate of Change of an Extensive Property of a System Expressed in Terms of a Fixed Finite Control Volume
  • Problems
  • References
  • Chapter 2 Fundamental Equations of Laminar Convective Heat Transfer
  • 2.1 Introduction
  • 2.2 Integral Formulation
  • 2.2.1 Conservation of Mass in Integral Form
  • 2.2.2 Conservation of Linear Momentum in Integral Form
  • 2.2.3 Conservation of Energy in Integral Form
  • 2.3 Differential Formulation of Conservation Equations
  • 2.3.1 Conservation of Mass in Differential Form
  • 2.3.1.1 Cylindrical Coordinates
  • 2.3.1.2 Spherical Coordinates
  • 2.3.2 Conservation of Linear Momentum in Differential Form
  • 2.3.2.1 Equation of Motion for a Newtonian Fluid with Constant Dynamic Viscosity μ and Density ρ
  • 2.3.2.2 Cartesian Coordinates (x, y, z)
  • 2.3.2.3 Cylindrical Coordinates (r, θ, z)
  • 2.3.2.4 Spherical Coordinates (r, θ, ϕ)
  • 2.3.3 Conservation of Energy in Differential Form
  • 2.3.3.1 Mechanical Energy Equation
  • 2.3.3.2 Thermal Energy Equation.
  • 2.3.3.3 Thermal Energy Equation in Terms of Internal Energy
  • 2.3.3.4 Thermal Energy Equation in Terms of Enthalpy
  • 2.3.3.5 Temperature T and Constant Volume Specific Heat cv
  • 2.3.3.6 Temperature and Constant Pressure Specific Heat cp
  • 2.3.3.7 Special Cases of the Differential Energy Equation
  • 2.3.3.8 Perfect Gas and the Thermal Energy Equation Involving T and cp
  • 2.3.3.9 Perfect Gas and the Thermal Energy Equation Involving T and cv
  • 2.3.3.10 An Incompressible Pure Substance
  • 2.3.3.11 Rectangular Coordinates
  • 2.3.3.12 Cylindrical Coordinates (r, θ, z)
  • 2.3.3.13 Spherical Coordinates (r, θ, ϕ)
  • Problems
  • References
  • Chapter 3 Equations of Incompressible External Laminar Boundary Layers
  • 3.1 Introduction
  • 3.2 Laminar Momentum Transfer
  • 3.3 The Momentum Boundary Layer Concept
  • 3.3.1 Scaling of Momentum Equation
  • 3.4 The Thermal Boundary Layer Concept
  • 3.4.1 Scaling of Energy Equation
  • 3.5 Summary of Boundary Layer Equations of Steady Laminar Flow
  • Problems
  • References
  • Chapter 4 Integral Methods in Convective Heat Transfer
  • 4.1 Introduction
  • 4.2 Conservation of Mass
  • 4.3 The Momentum Integral Equation
  • 4.3.1 The Displacement Thickness δ1
  • 4.3.2 Momentum Thickness δ2
  • 4.4 Alternative Form of the Momentum Integral Equation
  • 4.5 Momentum Integral Equation for Two‐Dimensional Flow
  • 4.6 Energy Integral Equation
  • 4.6.1 Enthalpy Thickness
  • 4.6.2 Conduction Thickness
  • 4.6.3 Convection Conductance or Heat Transfer Coefficient
  • 4.7 Alternative Form of the Energy Integral Equation
  • 4.8 Energy Integral Equation for Two‐Dimensional Flow
  • Problems
  • References
  • Chapter 5 Dimensional Analysis
  • 5.1 Introduction
  • 5.2 Dimensional Analysis
  • 5.2.1 Dimensional Homogeneity
  • 5.2.2 Buckingham π Theorem
  • 5.2.3 Determination of π Terms.
  • 5.3 Nondimensionalization of Basic Differential Equations
  • 5.4 Discussion
  • 5.5 Dimensionless Numbers
  • 5.5.1 Reynolds Number
  • 5.5.2 Peclet Number
  • 5.5.3 Prandtl Number
  • 5.5.4 Nusselt Number
  • 5.5.5 Stanton Number
  • 5.5.6 Skin Friction Coefficient
  • 5.5.7 Graetz Number
  • 5.5.8 Eckert Number
  • 5.5.9 Grashof Number
  • 5.5.10 Rayleigh Number
  • 5.5.11 Brinkman Number
  • 5.6 Correlations of Experimental Data
  • Problems
  • References
  • Chapter 6 One‐Dimensional Solutions in Convective Heat Transfer
  • 6.1 Introduction
  • 6.2 Couette Flow
  • 6.3 Poiseuille Flow
  • 6.4 Rotating Flows
  • Problems
  • References
  • Chapter 7 Laminar External Boundary Layers: Momentum and Heat Transfer
  • 7.1 Introduction
  • 7.2 Velocity Boundary Layer over a Semi‐Infinite Flat Plate: Similarity Solution
  • 7.3 Momentum Transfer over a Wedge (Falkner-Skan Wedge Flow): Similarity Solution
  • 7.4 Application of Integral Methods to Momentum Transfer Problems
  • 7.4.1 Laminar Forced Flow over a Flat Plate with Uniform Velocity
  • 7.4.2 Two‐Dimensional Laminar Flow over a Surface with Pressure Gradient (Variable Free Stream Velocity)
  • 7.4.2.1 The Correlation Method of Thwaites
  • 7.4.2.2 A Thwaites Type Correlation for Axisymmetric Body
  • 7.5 Viscous Incompressible Constant Property Parallel Flow over a Semi‐Infinite Flat Plate: Similarity Solution for Uniform Wall Temperature Boundary Condition
  • 7.6 Low‐Prandtl‐Number Viscous Incompressible Constant Property Parallel Flow over a Semi‐Infinite Flat Plate: Similarity Solutions for Uniform Wall Temperature Boundary Condition
  • 7.7 High‐Prandtl‐Number Viscous Incompressible Constant Property Parallel Flow over a Semi‐Infinite Flat Plate: Similarity Solutions for Uniform Wall Temperature Boundary Condition.
  • 7.8 Viscous Incompressible Constant Property Parallel Flow over a Semi‐Infinite Flat Plate: Similarity Solution for Uniform Heat Flux Boundary Condition
  • 7.9 Viscous Incompressible Constant Property Parallel Flow over a Semi‐Infinite Flat Plate: Similarity Solutions for Variable Wall Temperature Boundary Condition
  • 7.9.1 Superposition Principle
  • 7.10 Viscous Incompressible Constant Property Flow over a Wedge (Falkner-Skan Wedge Flow): Similarity Solution for Uniform Wall Temperature Boundary Condition
  • 7.11 Effect of Property Variation
  • 7.12 Application of Integral Methods to Heat Transfer Problems
  • 7.12.1 Viscous Flow with Constant Free Stream Velocity Along a Semi‐Infinite Plate Under Uniform Wall Temperature: With Unheated Starting Length or Adiabatic Segment
  • 7.12.1.1 The Plate Without Unheated Starting Length
  • 7.12.2 Viscous Flow with Constant Free Stream Velocity Along a Semi‐Infinite Plate with Uniform Wall Heat Flux: With Unheated Starting Length (Adiabatic Segment)
  • 7.12.2.1 The Plate with No Unheated Starting Length
  • 7.13 Superposition Principle
  • 7.13.1 Superposition Principle Applied to Slug Flow over a Flat Plate: Arbitrary Variation in Wall Temperature
  • 7.13.1.1 Boundary Condition: Single Step at x &amp
  • equals
  • 7.13.1.2 Boundary Condition: Two Steps at x &amp
  • equals
  • 0 and x &amp
  • equals
  • ξ1
  • 7.13.1.3 Boundary Condition: Three Steps at x &amp
  • equals
  • 0, x &amp
  • equals
  • ξ1, and x &amp
  • equals
  • ξ2
  • 7.13.2 Superposition Principle Applied to Slug Flow over a Flat Plate: Arbitrary Variation in Wall Heat Flux
  • 7.13.2.1 Boundary Condition: Single Step at x &amp
  • equals
  • 7.13.2.2 Boundary Condition: Two Steps at x &amp
  • equals
  • 0 and x &amp
  • equals
  • ξ1
  • 7.13.2.3 Boundary Condition: Triple Steps at x &amp
  • equals
  • 0, x &amp
  • equals
  • ξ1, and x &amp
  • equals.
  • ξ2
  • 7.13.3 Superposition Principle Applied to Viscous Flow over a Flat Plate: Stepwise Variation in Wall Temperature
  • 7.13.3.1 First Problem
  • 7.13.3.2 Second Problem
  • 7.13.3.3 Heat Flux for 0 &lt
  • x &lt
  • ξ
  • 7.13.3.4 The Heat Flux for x &gt
  • ξ1
  • 7.13.4 Superposition Principle Applied to Viscus Flow over a Flat Plate: Stepwise Variation in Surface Heat Flux
  • 7.13.4.1 First Problem
  • 7.13.4.2 Second Problem
  • 7.14 Viscous Flow over a Flat Plate with Arbitrary Surface Temperature Distribution
  • 7.15 Viscous Flow over a Flat Plate with Arbitrarily Specified Heat Flux
  • 7.16 One‐Parameter Integral Method for Incompressible Two‐Dimensional Laminar Flow Heat Transfer: Variable U∞(x) and Constant Tw − T∞ &amp
  • equals
  • const
  • 7.17 One‐Parameter Integral Method for Incompressible Laminar Flow Heat Transfer over a Constant Temperature of a Body of Revolution
  • Problems
  • References
  • Chapter 8 Laminar Momentum and Heat Transfer in Channels
  • 8.1 Introduction
  • 8.2 Momentum Transfer
  • 8.2.1 Hydrodynamic Considerations in Ducts
  • 8.2.2 Fully Developed Laminar Flow in Circular Tube
  • 8.2.3 Fully Developed Flow Between Two Infinite Parallel Plates
  • 8.3 Thermal Considerations in Ducts
  • 8.4 Heat Transfer in the Entrance Region of Ducts
  • 8.4.1 Circular Pipe: Slug Flow Heat Transfer in the Entrance Region
  • 8.4.1.1 Heat Transfer for Low‐Prandtl‐Number Fluid Flow (Slug Flow) in the Entrance Region of Circular Tube Subjected to Constant Wall Temperature
  • 8.4.1.2 Heat Transfer to Low‐Prandtl‐Number Fluid Flow (Slug Flow) in the Entrance Region of the Circular Tube Subjected to Constant Heat Flux
  • 8.4.1.3 Empirical and Theoretical Correlations for Viscous Flow Heat Transfer in the Entrance Region of the Circular Tube
  • 8.4.2 Parallel Plates: Slug Flow Heat Transfer in the Entrance Region.
  • 8.4.2.1 Heat Transfer to a Low‐Prandtl‐Number Fluid (Slug Flow) in the Entrance Region of Parallel Plates: Both Plates Are Subjected to Constant Wall Temperatures.