Hybrid micromachining and microfabrication technologies principles, varieties and applications

HYBRID MICROMACHINING and MICROFABRICATION TECHNOLOGIES The book aims to provide a thorough understanding of numerous advanced hybrid micromachining and microfabrication techniques as well as future directions, providing researchers and engineers who work in hybrid micromachining with a much-appreci...

Descripción completa

Detalles Bibliográficos
Otros Autores: Kibria, Golam, editor (editor), Kunar, Sandip, editor, Chatterjee, Prasenjit, editor, Perveen, Asma, editor
Formato: Libro electrónico
Idioma:Inglés
Publicado: Hoboken, NJ : John Wiley & Sons, Inc. ; Scrivener Publishing LLC 2023.
Colección:Innovations in Materials and Manufacturing Series.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009752723006719
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright Page
  • Contents
  • Preface
  • Acknowledgement
  • Chapter 1 Overview of Hybrid Micromachining and Microfabrication Techniques
  • 1.1 Introduction
  • 1.2 Classification of Hybrid Micromachining and Microfabrication Techniques
  • 1.2.1 Compound Processes
  • 1.2.2 Methods Aided by Various Energy Sources
  • 1.2.3 Processing Using a Hybrid Tool
  • 1.3 Challenges in Hybrid Micromachining
  • 1.4 Conclusions
  • 1.5 Future Research Opportunities
  • References
  • Chapter 2 A Review on Experimental Studies in Electrochemical Discharge Machining
  • 2.1 Introduction
  • 2.2 Historical Background
  • 2.3 Principle of Electrochemical Discharge Machining Process
  • 2.4 Basic Mechanism of Electrochemical Discharge Machining Process
  • 2.5 Application of ECDM Process
  • 2.6 Literature Review on ECDM
  • 2.6.1 Literature Review on Theoretical Modeling
  • 2.6.2 Literature Review on Internal Behavioral Studies
  • 2.6.3 Literature Review on Design of ECDM
  • 2.6.4 Literature Review on Workpiece Materials Used in ECDM
  • 2.6.5 Literature Review on Tooling Materials and Its Design in ECDM
  • 2.6.6 Literature Review on Electrolyte Chemicals Used in ECDM
  • 2.6.7 Literature Review on Optimization Techniques Used in ECDM
  • 2.7 Conclusion
  • Acknowledgments
  • References
  • Chapter 3 Laser-Assisted Micromilling
  • 3.1 Introduction
  • 3.2 Laser-Assisted Micromilling
  • 3.2.1 Laser-Assisted Micromilling of Steel Alloys
  • 3.2.2 Laser-Assisted Micromilling of Titanium Alloys
  • 3.2.3 Laser-Assisted Micromilling of Ni Alloys
  • 3.2.4 Laser-Assisted Micromilling of Cementite Carbide
  • 3.2.5 Laser-Assisted Micromilling of Ceramics
  • 3.3 Conclusion
  • References
  • Chapter 4 Ultrasonic-Assisted Electrochemical Micromachining
  • 4.1 Introduction
  • 4.2 Ultrasonic Effect
  • 4.2.1 Pumping Effect
  • 4.2.2 Cavitation Effect
  • 4.3 Experimental Procedure.
  • 4.4 Results and Discussion
  • 4.4.1 Effect of Traditional Electrochemical Micromachining
  • 4.4.2 Effect of Electrolyte Jet During Micropatterning
  • 4.4.3 Effect of Ultrasonic Assistance During Micropatterning
  • 4.4.4 Effect of Ultrasonic Amplitude During Micropatterning
  • 4.4.5 Influence of Working Voltage During Micropatterning
  • 4.4.6 Influence of Pulse-Off Time During Micropatterning
  • 4.4.7 Influence of Electrode Feed Rate During Micropatterning
  • 4.5 Conclusions
  • References
  • Chapter 5 Micro-Electrochemical Piercing on SS 204
  • 5.1 Introduction
  • 5.2 Experimentation on SS 204 Plates With Cu Tool Electrodes
  • 5.3 Results and Discussions
  • 5.4 Conclusions
  • References
  • Chapter 6 Laser-Assisted Electrochemical Discharge Micromachining
  • 6.1 Introduction
  • 6.2 Experimental Procedure
  • 6.3 Results and Discussion
  • 6.3.1 ECDM Pre-Process
  • 6.3.2 Laser Pre-Process
  • 6.4 Conclusions
  • References
  • Chapter 7 Laser-Assisted Hybrid Micromachining Processes and Its Applications
  • 7.1 Introduction
  • 7.2 Laser-Assisted Hybrid Micromachining
  • 7.3 Laser-Assisted Traditional-HMMPs
  • 7.3.1 Laser-Assisted Microturning Process
  • 7.3.2 Laser-Assisted Microdrilling Process
  • 7.3.3 Laser-Assisted Micromilling Process
  • 7.3.4 Laser-Assisted Microgrinding Process
  • 7.4 Laser-Assisted Nontraditional HMMPs
  • 7.4.1 Laser-Assisted Electrodischarge Micromachining
  • 7.4.2 Laser-Assisted Electrochemical Micromachining
  • 7.4.3 Laser-Assisted Electrochemical Spark Micromachining
  • 7.4.4 Laser-Assisted Water Jet Micromachining
  • 7.5 Capabilities and Shortfalls of LA-HMMPs
  • 7.6 Conclusion
  • Acknowledgment
  • References
  • Chapter 8 Hybrid Laser-Assisted Jet Electrochemical Micromachining Process
  • 8.1 Introduction
  • 8.2 Overview of Electrochemical Machining
  • 8.3 Importance of Electrochemical Micromachining.
  • 8.4 Fundamentals of Electrochemical Micromachining
  • 8.4.1 Electrochemistry of Electrochemical Micromachining
  • 8.4.2 Mechanism of Material Removal
  • 8.5 Major Factors of EMM
  • 8.5.1 Nature of Power Supply
  • 8.5.2 Interelectrode Gap (IEG)
  • 8.5.3 Temperature, Concentration, and Electrolyte Flow
  • 8.6 Jet Electrochemical Micromachining
  • 8.7 Laser as Assisting Process
  • 8.8 Laser-Assisted Jet Electrochemical Micromachining (LA-JECM)
  • 8.8.1 Working Principles of LAJECM
  • 8.8.2 Mechanism of Material Removal
  • 8.8.3 Materials
  • 8.8.4 Theoretical and Experimental Method for Process Energy Distribution
  • 8.8.5 LAJECM Process Temperature
  • 8.8.6 Material Removal Rate and Taper Angle
  • 8.8.7 LAJECM and JECM Comparison
  • 8.8.8 Machining Precision
  • 8.8.8.1 Geometry Precision
  • 8.8.8.2 Profile Surface Roughness
  • 8.9 Applications of LAJECM
  • References
  • Chapter 9 Ultrasonic Vibration-Assisted Microwire Electrochemical Discharge Machining
  • 9.1 Introduction
  • 9.2 Experimental Setup
  • 9.3 Results and Discussion
  • 9.3.1 Influence of Ultrasonic Amplitude on Micro Slit Width
  • 9.3.2 Influence of Voltage on Micro Slit Width
  • 9.3.3 Effect of Duty Ratio on Micro Slit Width
  • 9.3.4 Influence of Frequency on Slit Width
  • 9.3.5 Analysis of Micro Slits
  • 9.4 Conclusions
  • References
  • Chapter 10 Study of Soda-Lime Glass Machinability by Gunmetal Tool in Electrochemical Discharge Machining and Process Parameters Optimization Using Grey Relational Analysis
  • 10.1 Introduction
  • 10.2 Experimental Conditions
  • 10.3 Analysis of Average MRR of Workpiece (Soda-Lime Glass) Through Gunmetal Electrode
  • 10.3.1 ANOVA for Average MRR
  • 10.3.2 Influence of Input Factors on Average MRR
  • 10.4 Analysis of Average Depth of Machined Hole on Soda-Lime Glass Through Gunmetal Electrode
  • 10.4.1 ANOVA for Average Machined Depth.
  • 10.4.2 Influence of Input Factors on Average Machined Depth
  • 10.5 Analysis of Average Diameter of Hole of Soda-Lime Glass Through Gunmetal Electrode
  • 10.5.1 ANOVA for Average Hole Diameter
  • 10.5.2 Influence of Input Factors on Average Hole Diameter
  • 10.6 Grey Relational Analysis Optimization of Soda-Lime Glass Results by Gunmetal Electrode
  • 10.6.1 Methodology of Grey Relational Analysis
  • 10.6.2 Data Pre-Processing
  • 10.6.3 Grey Relational Generating
  • 10.6.4 Deviation Sequence
  • 10.6.5 Grey Relational Coefficient
  • 10.6.6 Grey Relational Grade
  • 10.7 Conclusion
  • Acknowledgments
  • References
  • Chapter 11 Micro Turbine Generator Combined with Silicon Structure and Ceramic Magnetic Circuit
  • 11.1 Introduction
  • 11.2 Concept
  • 11.3 Fabrication Technology
  • 11.3.1 Microfabrication Technology of Silicon Material
  • 11.3.2 Multilayer Ceramic Technology
  • 11.4 Designs and Experiments
  • 11.4.1 Designs of Turbine and Magnetic Circuit for Single-Phase Type
  • 11.4.2 Designs of Turbine and Magnetic Circuit for Three-Phase Type
  • 11.4.3 Rotational Experiment and Rotor Blade Design
  • 11.4.4 Low Boiling Point Fluid and Experiment
  • 11.5 Results and Discussion
  • 11.5.1 Fabricated Evaluation
  • 11.5.2 Rotational Result
  • 11.5.3 Comparison of Rotor Shape and Rotational Motion
  • 11.5.4 Phase Change
  • 11.6 Conclusions
  • Acknowledgment
  • References
  • Chapter 12 A Review on Hybrid Micromachining Process and Technologies
  • 12.1 Introduction
  • 12.2 Characteristics of Hybrid-Micromachining
  • 12.3 Bibliometric Survey of Micromachining to Hybrid-Micromachining
  • 12.4 Material Removal in Microsizes
  • 12.5 Nontraditional Hybrid-Micromachining Technologies
  • 12.6 Classification of Techniques Used for Micromachining to Hybrid-Micromachining
  • 12.6.1 Classification According to Material Removal Hybrid-Micromachining Phenomena.
  • 12.6.2 Classification According to Categories Based on Material Removal Accuracy
  • 12.6.3 Classification According to Hybrid-Micromachining Purposes
  • 12.6.4 Classification of Hybrid Micromanufacturing Processes
  • 12.7 Materials Are Used and Application of Hybrid-Micromachining
  • 12.8 Conclusions
  • References
  • Chapter 13 Material Removal in Spark-Assisted Chemical Engraving for Micromachining
  • 13.1 Introduction
  • 13.2 Essentials of SACE
  • 13.2.1 Instances of SACE Micromachining
  • 13.3 Genesis of SACE Acronym: A Brief Historical Survey
  • 13.4 SACE: A Viable Micromachining Technology
  • 13.4.1 Mechanical μ-Machining Techniques
  • 13.4.2 Chemical μ-Machining Methods
  • 13.4.3 Thermal μ-Machining Methods
  • 13.5 Material Removal Mechanism in SACE μ-Machining
  • 13.5.1 General Aspects
  • 13.5.2 Micromachining at Shallow Depths
  • 13.5.3 Micromachining at High Depths
  • 13.5.4 Micromachining by Chemical Reaction
  • 13.6 SACE μ-Machining Process Control
  • 13.6.1 Analysis of Process
  • 13.6.2 Etch Promotion
  • 13.7 Conclusion and Scope for Future Work
  • References
  • Index
  • EULA.