Hybrid micromachining and microfabrication technologies principles, varieties and applications
HYBRID MICROMACHINING and MICROFABRICATION TECHNOLOGIES The book aims to provide a thorough understanding of numerous advanced hybrid micromachining and microfabrication techniques as well as future directions, providing researchers and engineers who work in hybrid micromachining with a much-appreci...
Otros Autores: | , , , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Hoboken, NJ :
John Wiley & Sons, Inc. ; Scrivener Publishing LLC
2023.
|
Colección: | Innovations in Materials and Manufacturing Series.
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009752723006719 |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright Page
- Contents
- Preface
- Acknowledgement
- Chapter 1 Overview of Hybrid Micromachining and Microfabrication Techniques
- 1.1 Introduction
- 1.2 Classification of Hybrid Micromachining and Microfabrication Techniques
- 1.2.1 Compound Processes
- 1.2.2 Methods Aided by Various Energy Sources
- 1.2.3 Processing Using a Hybrid Tool
- 1.3 Challenges in Hybrid Micromachining
- 1.4 Conclusions
- 1.5 Future Research Opportunities
- References
- Chapter 2 A Review on Experimental Studies in Electrochemical Discharge Machining
- 2.1 Introduction
- 2.2 Historical Background
- 2.3 Principle of Electrochemical Discharge Machining Process
- 2.4 Basic Mechanism of Electrochemical Discharge Machining Process
- 2.5 Application of ECDM Process
- 2.6 Literature Review on ECDM
- 2.6.1 Literature Review on Theoretical Modeling
- 2.6.2 Literature Review on Internal Behavioral Studies
- 2.6.3 Literature Review on Design of ECDM
- 2.6.4 Literature Review on Workpiece Materials Used in ECDM
- 2.6.5 Literature Review on Tooling Materials and Its Design in ECDM
- 2.6.6 Literature Review on Electrolyte Chemicals Used in ECDM
- 2.6.7 Literature Review on Optimization Techniques Used in ECDM
- 2.7 Conclusion
- Acknowledgments
- References
- Chapter 3 Laser-Assisted Micromilling
- 3.1 Introduction
- 3.2 Laser-Assisted Micromilling
- 3.2.1 Laser-Assisted Micromilling of Steel Alloys
- 3.2.2 Laser-Assisted Micromilling of Titanium Alloys
- 3.2.3 Laser-Assisted Micromilling of Ni Alloys
- 3.2.4 Laser-Assisted Micromilling of Cementite Carbide
- 3.2.5 Laser-Assisted Micromilling of Ceramics
- 3.3 Conclusion
- References
- Chapter 4 Ultrasonic-Assisted Electrochemical Micromachining
- 4.1 Introduction
- 4.2 Ultrasonic Effect
- 4.2.1 Pumping Effect
- 4.2.2 Cavitation Effect
- 4.3 Experimental Procedure.
- 4.4 Results and Discussion
- 4.4.1 Effect of Traditional Electrochemical Micromachining
- 4.4.2 Effect of Electrolyte Jet During Micropatterning
- 4.4.3 Effect of Ultrasonic Assistance During Micropatterning
- 4.4.4 Effect of Ultrasonic Amplitude During Micropatterning
- 4.4.5 Influence of Working Voltage During Micropatterning
- 4.4.6 Influence of Pulse-Off Time During Micropatterning
- 4.4.7 Influence of Electrode Feed Rate During Micropatterning
- 4.5 Conclusions
- References
- Chapter 5 Micro-Electrochemical Piercing on SS 204
- 5.1 Introduction
- 5.2 Experimentation on SS 204 Plates With Cu Tool Electrodes
- 5.3 Results and Discussions
- 5.4 Conclusions
- References
- Chapter 6 Laser-Assisted Electrochemical Discharge Micromachining
- 6.1 Introduction
- 6.2 Experimental Procedure
- 6.3 Results and Discussion
- 6.3.1 ECDM Pre-Process
- 6.3.2 Laser Pre-Process
- 6.4 Conclusions
- References
- Chapter 7 Laser-Assisted Hybrid Micromachining Processes and Its Applications
- 7.1 Introduction
- 7.2 Laser-Assisted Hybrid Micromachining
- 7.3 Laser-Assisted Traditional-HMMPs
- 7.3.1 Laser-Assisted Microturning Process
- 7.3.2 Laser-Assisted Microdrilling Process
- 7.3.3 Laser-Assisted Micromilling Process
- 7.3.4 Laser-Assisted Microgrinding Process
- 7.4 Laser-Assisted Nontraditional HMMPs
- 7.4.1 Laser-Assisted Electrodischarge Micromachining
- 7.4.2 Laser-Assisted Electrochemical Micromachining
- 7.4.3 Laser-Assisted Electrochemical Spark Micromachining
- 7.4.4 Laser-Assisted Water Jet Micromachining
- 7.5 Capabilities and Shortfalls of LA-HMMPs
- 7.6 Conclusion
- Acknowledgment
- References
- Chapter 8 Hybrid Laser-Assisted Jet Electrochemical Micromachining Process
- 8.1 Introduction
- 8.2 Overview of Electrochemical Machining
- 8.3 Importance of Electrochemical Micromachining.
- 8.4 Fundamentals of Electrochemical Micromachining
- 8.4.1 Electrochemistry of Electrochemical Micromachining
- 8.4.2 Mechanism of Material Removal
- 8.5 Major Factors of EMM
- 8.5.1 Nature of Power Supply
- 8.5.2 Interelectrode Gap (IEG)
- 8.5.3 Temperature, Concentration, and Electrolyte Flow
- 8.6 Jet Electrochemical Micromachining
- 8.7 Laser as Assisting Process
- 8.8 Laser-Assisted Jet Electrochemical Micromachining (LA-JECM)
- 8.8.1 Working Principles of LAJECM
- 8.8.2 Mechanism of Material Removal
- 8.8.3 Materials
- 8.8.4 Theoretical and Experimental Method for Process Energy Distribution
- 8.8.5 LAJECM Process Temperature
- 8.8.6 Material Removal Rate and Taper Angle
- 8.8.7 LAJECM and JECM Comparison
- 8.8.8 Machining Precision
- 8.8.8.1 Geometry Precision
- 8.8.8.2 Profile Surface Roughness
- 8.9 Applications of LAJECM
- References
- Chapter 9 Ultrasonic Vibration-Assisted Microwire Electrochemical Discharge Machining
- 9.1 Introduction
- 9.2 Experimental Setup
- 9.3 Results and Discussion
- 9.3.1 Influence of Ultrasonic Amplitude on Micro Slit Width
- 9.3.2 Influence of Voltage on Micro Slit Width
- 9.3.3 Effect of Duty Ratio on Micro Slit Width
- 9.3.4 Influence of Frequency on Slit Width
- 9.3.5 Analysis of Micro Slits
- 9.4 Conclusions
- References
- Chapter 10 Study of Soda-Lime Glass Machinability by Gunmetal Tool in Electrochemical Discharge Machining and Process Parameters Optimization Using Grey Relational Analysis
- 10.1 Introduction
- 10.2 Experimental Conditions
- 10.3 Analysis of Average MRR of Workpiece (Soda-Lime Glass) Through Gunmetal Electrode
- 10.3.1 ANOVA for Average MRR
- 10.3.2 Influence of Input Factors on Average MRR
- 10.4 Analysis of Average Depth of Machined Hole on Soda-Lime Glass Through Gunmetal Electrode
- 10.4.1 ANOVA for Average Machined Depth.
- 10.4.2 Influence of Input Factors on Average Machined Depth
- 10.5 Analysis of Average Diameter of Hole of Soda-Lime Glass Through Gunmetal Electrode
- 10.5.1 ANOVA for Average Hole Diameter
- 10.5.2 Influence of Input Factors on Average Hole Diameter
- 10.6 Grey Relational Analysis Optimization of Soda-Lime Glass Results by Gunmetal Electrode
- 10.6.1 Methodology of Grey Relational Analysis
- 10.6.2 Data Pre-Processing
- 10.6.3 Grey Relational Generating
- 10.6.4 Deviation Sequence
- 10.6.5 Grey Relational Coefficient
- 10.6.6 Grey Relational Grade
- 10.7 Conclusion
- Acknowledgments
- References
- Chapter 11 Micro Turbine Generator Combined with Silicon Structure and Ceramic Magnetic Circuit
- 11.1 Introduction
- 11.2 Concept
- 11.3 Fabrication Technology
- 11.3.1 Microfabrication Technology of Silicon Material
- 11.3.2 Multilayer Ceramic Technology
- 11.4 Designs and Experiments
- 11.4.1 Designs of Turbine and Magnetic Circuit for Single-Phase Type
- 11.4.2 Designs of Turbine and Magnetic Circuit for Three-Phase Type
- 11.4.3 Rotational Experiment and Rotor Blade Design
- 11.4.4 Low Boiling Point Fluid and Experiment
- 11.5 Results and Discussion
- 11.5.1 Fabricated Evaluation
- 11.5.2 Rotational Result
- 11.5.3 Comparison of Rotor Shape and Rotational Motion
- 11.5.4 Phase Change
- 11.6 Conclusions
- Acknowledgment
- References
- Chapter 12 A Review on Hybrid Micromachining Process and Technologies
- 12.1 Introduction
- 12.2 Characteristics of Hybrid-Micromachining
- 12.3 Bibliometric Survey of Micromachining to Hybrid-Micromachining
- 12.4 Material Removal in Microsizes
- 12.5 Nontraditional Hybrid-Micromachining Technologies
- 12.6 Classification of Techniques Used for Micromachining to Hybrid-Micromachining
- 12.6.1 Classification According to Material Removal Hybrid-Micromachining Phenomena.
- 12.6.2 Classification According to Categories Based on Material Removal Accuracy
- 12.6.3 Classification According to Hybrid-Micromachining Purposes
- 12.6.4 Classification of Hybrid Micromanufacturing Processes
- 12.7 Materials Are Used and Application of Hybrid-Micromachining
- 12.8 Conclusions
- References
- Chapter 13 Material Removal in Spark-Assisted Chemical Engraving for Micromachining
- 13.1 Introduction
- 13.2 Essentials of SACE
- 13.2.1 Instances of SACE Micromachining
- 13.3 Genesis of SACE Acronym: A Brief Historical Survey
- 13.4 SACE: A Viable Micromachining Technology
- 13.4.1 Mechanical μ-Machining Techniques
- 13.4.2 Chemical μ-Machining Methods
- 13.4.3 Thermal μ-Machining Methods
- 13.5 Material Removal Mechanism in SACE μ-Machining
- 13.5.1 General Aspects
- 13.5.2 Micromachining at Shallow Depths
- 13.5.3 Micromachining at High Depths
- 13.5.4 Micromachining by Chemical Reaction
- 13.6 SACE μ-Machining Process Control
- 13.6.1 Analysis of Process
- 13.6.2 Etch Promotion
- 13.7 Conclusion and Scope for Future Work
- References
- Index
- EULA.