Optimization for learning and control

"Comprehensive resource providing a masters' level introduction to optimization theory and algorithms for learning and control Optimization for Learning and Control describes how optimization is used in these domains, giving a thorough introduction to both unsupervised learning, supervised...

Descripción completa

Detalles Bibliográficos
Otros Autores: Hansson, Anders, author (author), Andersen, Martin, author
Formato: Libro electrónico
Idioma:Inglés
Publicado: Hoboken, New Jersey : John Wiley & Sons, Inc [2023]
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009752721906719
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright
  • Contents
  • Preface
  • Acknowledgments
  • Glossary
  • Acronyms
  • About the Companion Website
  • Part I Introductory Part
  • Chapter 1 Introduction
  • 1.1 Optimization
  • 1.2 Unsupervised Learning
  • 1.3 Supervised Learning
  • 1.4 System Identification
  • 1.5 Control
  • 1.6 Reinforcement Learning
  • 1.7 Outline
  • Chapter 2 Linear Algebra
  • 2.1 Vectors and Matrices
  • 2.2 Linear Maps and Subspaces
  • 2.2.1 Four Fundamental Subspaces
  • 2.2.2 Square Matrices
  • 2.2.3 Affine Sets
  • 2.3 Norms
  • 2.4 Algorithm Complexity
  • 2.5 Matrices with Structure
  • 2.5.1 Diagonal Matrices
  • 2.5.2 Orthogonal Matrices
  • 2.5.3 Triangular Matrices
  • 2.5.4 Symmetric and Skew‐Symmetric Matrices
  • 2.5.5 Toeplitz and Hankel Matrices
  • 2.5.6 Sparse Matrices
  • 2.5.7 Band Matrices
  • 2.6 Quadratic Forms and Definiteness
  • 2.7 Spectral Decomposition
  • 2.8 Singular Value Decomposition
  • 2.9 Moore-Penrose Pseudoinverse
  • 2.10 Systems of Linear Equations
  • 2.10.1 Gaussian Elimination
  • 2.10.2 Block Elimination
  • 2.11 Factorization Methods
  • 2.11.1 LU Factorization
  • 2.11.2 Cholesky Factorization
  • 2.11.3 Indefinite LDL Factorization
  • 2.11.4 QR Factorization
  • 2.11.5 Sparse Factorizations
  • 2.11.6 Block Factorization
  • 2.11.7 Positive Semidefinite Block Factorization
  • 2.12 Saddle‐Point Systems
  • 2.12.1 H Positive Definite
  • 2.12.2 H Positive Semidefinite
  • 2.13 Vector and Matrix Calculus
  • Exercises
  • Chapter 3 Probability Theory
  • 3.1 Probability Spaces
  • 3.1.1 Probability Measure
  • 3.1.2 Probability Function
  • 3.1.3 Probability Density Function
  • 3.2 Conditional Probability
  • 3.3 Independence
  • 3.4 Random Variables
  • 3.4.1 Vector‐Valued Random Variable
  • 3.4.2 Marginal Distribution
  • 3.4.3 Independence of Random Variables
  • 3.4.4 Function of Random Variable
  • 3.5 Conditional Distributions.
  • 3.5.1 Conditional Probability Function
  • 3.5.2 Conditional Probability Density Function
  • 3.6 Expectations
  • 3.6.1 Moments
  • 3.6.2 Expected Value of Function of Random Variable
  • 3.6.3 Covariance
  • 3.7 Conditional Expectations
  • 3.8 Convergence of Random Variables
  • 3.9 Random Processes
  • 3.10 Markov Processes
  • 3.11 Hidden Markov Models
  • 3.12 Gaussian Processes
  • Exercises
  • Part II Optimization
  • Chapter 4 Optimization Theory
  • 4.1 Basic Concepts and Terminology
  • 4.1.1 Optimization Problems
  • 4.1.2 Equivalent Problems
  • 4.2 Convex Sets
  • 4.2.1 Convexity‐Preserving Operations
  • 4.2.1.1 Intersection
  • 4.2.1.2 Affine Transformation
  • 4.2.1.3 Perspective Transformation
  • 4.2.2 Examples of Convex Sets
  • 4.2.2.1 Hyperplanes and Halfspaces
  • 4.2.2.2 Polyhedral Sets
  • 4.2.2.3 Norm Balls and Ellipsoids
  • 4.2.2.4 Convex Cones
  • 4.2.3 Generalized Inequalities
  • 4.3 Convex Functions
  • 4.3.1 First‐ and Second‐Order Conditions for Convexity
  • 4.3.2 Convexity‐Preserving Operations
  • 4.3.2.1 Scaling, Sums, and Integrals
  • 4.3.2.2 Pointwise Maximum and Supremum
  • 4.3.2.3 Affine Transformation
  • 4.3.2.4 Perspective Transformation
  • 4.3.2.5 Partial Infimum
  • 4.3.2.6 Square of Nonnegative Convex Functions
  • 4.3.3 Examples of Convex Functions
  • 4.3.3.1 Norms
  • 4.3.3.2 Indicator and Support Functions
  • 4.3.4 Conjugation
  • 4.3.5 Dual Norms
  • 4.4 Subdifferentiability
  • 4.4.1 Subdifferential Calculus
  • 4.4.1.1 Nonnegative Scaling
  • 4.4.1.2 Summation
  • 4.4.1.3 Affine Transformation
  • 4.4.1.4 Pointwise Maximum
  • 4.4.1.5 Subgradients of Conjugate Functions
  • 4.5 Convex Optimization Problems
  • 4.5.1 Optimality Condition
  • 4.5.2 Equality Constrained Convex Problems
  • 4.6 Duality
  • 4.6.1 Lagrangian Duality
  • 4.6.2 Lagrange Dual Problem
  • 4.6.3 Fenchel Duality
  • 4.7 Optimality Conditions.
  • 4.7.1 Convex Optimization Problems
  • 4.7.2 Nonconvex Optimization Problems
  • Exercises
  • Chapter 5 Optimization Problems
  • 5.1 Least‐Squares Problems
  • 5.2 Quadratic Programs
  • 5.3 Conic Optimization
  • 5.3.1 Conic Duality
  • 5.3.2 Epigraphical Cones
  • 5.4 Rank Optimization
  • 5.5 Partially Separability
  • 5.5.1 Minimization of Partially Separable Functions
  • 5.5.2 Principle of Optimality
  • 5.6 Multiparametric Optimization
  • 5.7 Stochastic Optimization
  • Exercises
  • Chapter 6 Optimization Methods
  • 6.1 Basic Principles
  • 6.1.1 Smoothness
  • 6.1.2 Descent Methods
  • 6.1.3 Line Search Methods
  • 6.1.3.1 Backtracking Line Search
  • 6.1.3.2 Bisection Method for Wolfe Conditions
  • 6.1.4 Surrogation Methods
  • 6.1.4.1 Trust‐Region Methods
  • 6.1.4.2 Majorization Minimization
  • 6.1.5 Convergence of Sequences
  • 6.2 Gradient Descent
  • 6.2.1 L‐Smooth Functions
  • 6.2.2 Smooth and Convex Functions
  • 6.2.3 Smooth and Strongly Convex Functions
  • 6.3 Newton's Method
  • 6.3.1 The Newton Decrement
  • 6.3.2 Analysis of Newton's Method
  • 6.3.2.1 Affine Invariance
  • 6.3.2.2 Pure Newton Phase
  • 6.3.2.3 Damped Newton Phase
  • 6.3.3 Equality Constrained Minimization
  • 6.4 Variable Metric Methods
  • 6.4.1 Quasi‐Newton Updates
  • 6.4.1.1 The BFGS Update
  • 6.4.1.2 The DFP Update
  • 6.4.1.3 The SR1 Update
  • 6.4.2 The Barzilai-Borwein Method
  • 6.5 Proximal Gradient Method
  • 6.5.1 Gradient Projection Method
  • 6.5.2 Proximal Quasi‐Newton
  • 6.5.3 Accelerated Proximal Gradient Method
  • 6.6 Sequential Convex Optimization
  • 6.7 Methods for Nonlinear Least‐Squares
  • 6.7.1 The Levenberg‐Marquardt Algorithm
  • 6.7.2 The Variable Projection Method
  • 6.8 Stochastic Optimization Methods
  • 6.8.1 Smooth Functions
  • 6.8.2 Smooth and Strongly Convex Functions
  • 6.8.3 Incremental Methods
  • 6.8.4 Adaptive Methods
  • 6.8.4.1 AdaGrad
  • 6.8.4.2 RMSprop.
  • 6.8.4.3 Adam
  • 6.9 Coordinate Descent Methods
  • 6.10 Interior‐Point Methods
  • 6.10.1 Path‐Following Method
  • 6.10.2 Generalized Inequalities
  • 6.11 Augmented Lagrangian Methods
  • 6.11.1 Method of Multipliers
  • 6.11.2 Alternating Direction Method of Multipliers
  • 6.11.3 Variable Splitting
  • Exercises
  • Part III Optimal Control
  • Chapter 7 Calculus of Variations
  • 7.1 Extremum of Functionals
  • 7.1.1 Necessary Condition for Extremum
  • 7.1.2 Sufficient Condition for Optimality
  • 7.1.3 Constrained Problem
  • 7.1.4 Du Bois-Reymond Lemma
  • 7.1.5 Generalizations
  • 7.2 The Pontryagin Maximum Principle
  • 7.2.1 Linear Quadratic Control
  • 7.2.2 The Riccati Equation
  • 7.3 The Euler-Lagrange Equations
  • 7.3.1 Beltrami's Identity
  • 7.4 Extensions
  • 7.5 Numerical Solutions
  • 7.5.1 The Gradient Method
  • 7.5.2 The Shooting Method
  • 7.5.3 The Discretization Method
  • 7.5.4 The Multiple Shooting Method
  • 7.5.5 The Collocation Method
  • Exercises
  • Chapter 8 Dynamic Programming
  • 8.1 Finite Horizon Optimal Control
  • 8.1.1 Standard Optimization Problem
  • 8.1.2 Dynamic Programming
  • 8.2 Parametric Approximations
  • 8.2.1 Fitted‐Value Iteration
  • 8.3 Infinite Horizon Optimal Control
  • 8.3.1 Bellman Equation
  • 8.4 Value Iterations
  • 8.5 Policy Iterations
  • 8.5.1 Approximation
  • 8.6 Linear Programming Formulation
  • 8.6.1 Approximations
  • 8.7 Model Predictive Control
  • 8.7.1 Infinite Horizon Problem
  • 8.7.2 Guessing the Value Function
  • 8.7.3 Finite Horizon Approximation
  • 8.7.4 Receding Horizon Approximation
  • 8.8 Explicit MPC
  • 8.9 Markov Decision Processes
  • 8.9.1 Stochastic Dynamic Programming
  • 8.9.2 Infinite Time Horizon
  • 8.9.3 Stochastic Bellman Equation
  • 8.10 Appendix
  • 8.10.1 Stability and Optimality of Infinite Horizon Problem
  • 8.10.2 Stability and Optimality of Stochastic Infinite Time Horizon Problem.
  • 8.10.3 Stability of MPC
  • Exercises
  • Part IV Learning
  • Chapter 9 Unsupervised Learning
  • 9.1 Chebyshev Bounds
  • 9.2 Entropy
  • 9.2.1 Categorical Distribution
  • 9.2.2 Ising Distribution
  • 9.2.3 Normal Distribution
  • 9.3 Prediction
  • 9.3.1 Conditional Expectation Predictor
  • 9.3.2 Affine Predictor
  • 9.3.3 Linear Regression
  • 9.4 The Viterbi Algorithm
  • 9.5 Kalman Filter on Innovation Form
  • 9.6 Viterbi Decoder
  • 9.7 Graphical Models
  • 9.7.1 Ising Distribution
  • 9.7.2 Normal Distribution
  • 9.7.3 Markov Random Field
  • 9.8 Maximum Likelihood Estimation
  • 9.8.1 Categorical Distribution
  • 9.8.2 Ising Distribution
  • 9.8.3 Normal Distribution
  • 9.8.4 Generalizations
  • 9.9 Relative Entropy and Cross Entropy
  • 9.9.1 Gibbs' Inequality
  • 9.9.2 Cross Entropy
  • 9.10 The Expectation Maximization Algorithm
  • 9.11 Mixture Models
  • 9.12 Gibbs Sampling
  • 9.13 Boltzmann Machine
  • 9.14 Principal Component Analysis
  • 9.14.1 Solution
  • 9.14.2 Relation to Rank‐Constrained Optimization
  • 9.15 Mutual Information
  • 9.15.1 Channel Model
  • 9.15.2 Orthogonal Case
  • 9.15.3 Nonorthogonal Case
  • 9.15.4 Relationship to PCA
  • 9.16 Cluster Analysis
  • Exercises
  • Chapter 10 Supervised Learning
  • 10.1 Linear Regression
  • 10.1.1 Least‐Squares Estimation
  • 10.1.2 Maximum Likelihood Estimation
  • 10.1.3 Maximum a Posteriori Estimation
  • 10.2 Regression in Hilbert Spaces
  • 10.2.1 Infinite‐Dimensional LS Problem
  • 10.2.2 The Kernel Trick
  • 10.3 Gaussian Processes
  • 10.3.1 Gaussian MAP Estimate
  • 10.3.2 The Kernel Trick
  • 10.4 Classification
  • 10.4.1 Linear Regression
  • 10.4.2 Logistic Regression
  • 10.5 Support Vector Machines
  • 10.5.1 Hebbian Learning
  • 10.5.2 Quadratic Programming Formulation
  • 10.5.3 Soft Margin Classification
  • 10.5.4 The Dual Problem
  • 10.5.5 Recovering the Primal Solution
  • 10.5.6 The Kernel Trick.
  • 10.6 Restricted Boltzmann Machine.