Optimization for learning and control
"Comprehensive resource providing a masters' level introduction to optimization theory and algorithms for learning and control Optimization for Learning and Control describes how optimization is used in these domains, giving a thorough introduction to both unsupervised learning, supervised...
Otros Autores: | , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Hoboken, New Jersey :
John Wiley & Sons, Inc
[2023]
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009752721906719 |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright
- Contents
- Preface
- Acknowledgments
- Glossary
- Acronyms
- About the Companion Website
- Part I Introductory Part
- Chapter 1 Introduction
- 1.1 Optimization
- 1.2 Unsupervised Learning
- 1.3 Supervised Learning
- 1.4 System Identification
- 1.5 Control
- 1.6 Reinforcement Learning
- 1.7 Outline
- Chapter 2 Linear Algebra
- 2.1 Vectors and Matrices
- 2.2 Linear Maps and Subspaces
- 2.2.1 Four Fundamental Subspaces
- 2.2.2 Square Matrices
- 2.2.3 Affine Sets
- 2.3 Norms
- 2.4 Algorithm Complexity
- 2.5 Matrices with Structure
- 2.5.1 Diagonal Matrices
- 2.5.2 Orthogonal Matrices
- 2.5.3 Triangular Matrices
- 2.5.4 Symmetric and Skew‐Symmetric Matrices
- 2.5.5 Toeplitz and Hankel Matrices
- 2.5.6 Sparse Matrices
- 2.5.7 Band Matrices
- 2.6 Quadratic Forms and Definiteness
- 2.7 Spectral Decomposition
- 2.8 Singular Value Decomposition
- 2.9 Moore-Penrose Pseudoinverse
- 2.10 Systems of Linear Equations
- 2.10.1 Gaussian Elimination
- 2.10.2 Block Elimination
- 2.11 Factorization Methods
- 2.11.1 LU Factorization
- 2.11.2 Cholesky Factorization
- 2.11.3 Indefinite LDL Factorization
- 2.11.4 QR Factorization
- 2.11.5 Sparse Factorizations
- 2.11.6 Block Factorization
- 2.11.7 Positive Semidefinite Block Factorization
- 2.12 Saddle‐Point Systems
- 2.12.1 H Positive Definite
- 2.12.2 H Positive Semidefinite
- 2.13 Vector and Matrix Calculus
- Exercises
- Chapter 3 Probability Theory
- 3.1 Probability Spaces
- 3.1.1 Probability Measure
- 3.1.2 Probability Function
- 3.1.3 Probability Density Function
- 3.2 Conditional Probability
- 3.3 Independence
- 3.4 Random Variables
- 3.4.1 Vector‐Valued Random Variable
- 3.4.2 Marginal Distribution
- 3.4.3 Independence of Random Variables
- 3.4.4 Function of Random Variable
- 3.5 Conditional Distributions.
- 3.5.1 Conditional Probability Function
- 3.5.2 Conditional Probability Density Function
- 3.6 Expectations
- 3.6.1 Moments
- 3.6.2 Expected Value of Function of Random Variable
- 3.6.3 Covariance
- 3.7 Conditional Expectations
- 3.8 Convergence of Random Variables
- 3.9 Random Processes
- 3.10 Markov Processes
- 3.11 Hidden Markov Models
- 3.12 Gaussian Processes
- Exercises
- Part II Optimization
- Chapter 4 Optimization Theory
- 4.1 Basic Concepts and Terminology
- 4.1.1 Optimization Problems
- 4.1.2 Equivalent Problems
- 4.2 Convex Sets
- 4.2.1 Convexity‐Preserving Operations
- 4.2.1.1 Intersection
- 4.2.1.2 Affine Transformation
- 4.2.1.3 Perspective Transformation
- 4.2.2 Examples of Convex Sets
- 4.2.2.1 Hyperplanes and Halfspaces
- 4.2.2.2 Polyhedral Sets
- 4.2.2.3 Norm Balls and Ellipsoids
- 4.2.2.4 Convex Cones
- 4.2.3 Generalized Inequalities
- 4.3 Convex Functions
- 4.3.1 First‐ and Second‐Order Conditions for Convexity
- 4.3.2 Convexity‐Preserving Operations
- 4.3.2.1 Scaling, Sums, and Integrals
- 4.3.2.2 Pointwise Maximum and Supremum
- 4.3.2.3 Affine Transformation
- 4.3.2.4 Perspective Transformation
- 4.3.2.5 Partial Infimum
- 4.3.2.6 Square of Nonnegative Convex Functions
- 4.3.3 Examples of Convex Functions
- 4.3.3.1 Norms
- 4.3.3.2 Indicator and Support Functions
- 4.3.4 Conjugation
- 4.3.5 Dual Norms
- 4.4 Subdifferentiability
- 4.4.1 Subdifferential Calculus
- 4.4.1.1 Nonnegative Scaling
- 4.4.1.2 Summation
- 4.4.1.3 Affine Transformation
- 4.4.1.4 Pointwise Maximum
- 4.4.1.5 Subgradients of Conjugate Functions
- 4.5 Convex Optimization Problems
- 4.5.1 Optimality Condition
- 4.5.2 Equality Constrained Convex Problems
- 4.6 Duality
- 4.6.1 Lagrangian Duality
- 4.6.2 Lagrange Dual Problem
- 4.6.3 Fenchel Duality
- 4.7 Optimality Conditions.
- 4.7.1 Convex Optimization Problems
- 4.7.2 Nonconvex Optimization Problems
- Exercises
- Chapter 5 Optimization Problems
- 5.1 Least‐Squares Problems
- 5.2 Quadratic Programs
- 5.3 Conic Optimization
- 5.3.1 Conic Duality
- 5.3.2 Epigraphical Cones
- 5.4 Rank Optimization
- 5.5 Partially Separability
- 5.5.1 Minimization of Partially Separable Functions
- 5.5.2 Principle of Optimality
- 5.6 Multiparametric Optimization
- 5.7 Stochastic Optimization
- Exercises
- Chapter 6 Optimization Methods
- 6.1 Basic Principles
- 6.1.1 Smoothness
- 6.1.2 Descent Methods
- 6.1.3 Line Search Methods
- 6.1.3.1 Backtracking Line Search
- 6.1.3.2 Bisection Method for Wolfe Conditions
- 6.1.4 Surrogation Methods
- 6.1.4.1 Trust‐Region Methods
- 6.1.4.2 Majorization Minimization
- 6.1.5 Convergence of Sequences
- 6.2 Gradient Descent
- 6.2.1 L‐Smooth Functions
- 6.2.2 Smooth and Convex Functions
- 6.2.3 Smooth and Strongly Convex Functions
- 6.3 Newton's Method
- 6.3.1 The Newton Decrement
- 6.3.2 Analysis of Newton's Method
- 6.3.2.1 Affine Invariance
- 6.3.2.2 Pure Newton Phase
- 6.3.2.3 Damped Newton Phase
- 6.3.3 Equality Constrained Minimization
- 6.4 Variable Metric Methods
- 6.4.1 Quasi‐Newton Updates
- 6.4.1.1 The BFGS Update
- 6.4.1.2 The DFP Update
- 6.4.1.3 The SR1 Update
- 6.4.2 The Barzilai-Borwein Method
- 6.5 Proximal Gradient Method
- 6.5.1 Gradient Projection Method
- 6.5.2 Proximal Quasi‐Newton
- 6.5.3 Accelerated Proximal Gradient Method
- 6.6 Sequential Convex Optimization
- 6.7 Methods for Nonlinear Least‐Squares
- 6.7.1 The Levenberg‐Marquardt Algorithm
- 6.7.2 The Variable Projection Method
- 6.8 Stochastic Optimization Methods
- 6.8.1 Smooth Functions
- 6.8.2 Smooth and Strongly Convex Functions
- 6.8.3 Incremental Methods
- 6.8.4 Adaptive Methods
- 6.8.4.1 AdaGrad
- 6.8.4.2 RMSprop.
- 6.8.4.3 Adam
- 6.9 Coordinate Descent Methods
- 6.10 Interior‐Point Methods
- 6.10.1 Path‐Following Method
- 6.10.2 Generalized Inequalities
- 6.11 Augmented Lagrangian Methods
- 6.11.1 Method of Multipliers
- 6.11.2 Alternating Direction Method of Multipliers
- 6.11.3 Variable Splitting
- Exercises
- Part III Optimal Control
- Chapter 7 Calculus of Variations
- 7.1 Extremum of Functionals
- 7.1.1 Necessary Condition for Extremum
- 7.1.2 Sufficient Condition for Optimality
- 7.1.3 Constrained Problem
- 7.1.4 Du Bois-Reymond Lemma
- 7.1.5 Generalizations
- 7.2 The Pontryagin Maximum Principle
- 7.2.1 Linear Quadratic Control
- 7.2.2 The Riccati Equation
- 7.3 The Euler-Lagrange Equations
- 7.3.1 Beltrami's Identity
- 7.4 Extensions
- 7.5 Numerical Solutions
- 7.5.1 The Gradient Method
- 7.5.2 The Shooting Method
- 7.5.3 The Discretization Method
- 7.5.4 The Multiple Shooting Method
- 7.5.5 The Collocation Method
- Exercises
- Chapter 8 Dynamic Programming
- 8.1 Finite Horizon Optimal Control
- 8.1.1 Standard Optimization Problem
- 8.1.2 Dynamic Programming
- 8.2 Parametric Approximations
- 8.2.1 Fitted‐Value Iteration
- 8.3 Infinite Horizon Optimal Control
- 8.3.1 Bellman Equation
- 8.4 Value Iterations
- 8.5 Policy Iterations
- 8.5.1 Approximation
- 8.6 Linear Programming Formulation
- 8.6.1 Approximations
- 8.7 Model Predictive Control
- 8.7.1 Infinite Horizon Problem
- 8.7.2 Guessing the Value Function
- 8.7.3 Finite Horizon Approximation
- 8.7.4 Receding Horizon Approximation
- 8.8 Explicit MPC
- 8.9 Markov Decision Processes
- 8.9.1 Stochastic Dynamic Programming
- 8.9.2 Infinite Time Horizon
- 8.9.3 Stochastic Bellman Equation
- 8.10 Appendix
- 8.10.1 Stability and Optimality of Infinite Horizon Problem
- 8.10.2 Stability and Optimality of Stochastic Infinite Time Horizon Problem.
- 8.10.3 Stability of MPC
- Exercises
- Part IV Learning
- Chapter 9 Unsupervised Learning
- 9.1 Chebyshev Bounds
- 9.2 Entropy
- 9.2.1 Categorical Distribution
- 9.2.2 Ising Distribution
- 9.2.3 Normal Distribution
- 9.3 Prediction
- 9.3.1 Conditional Expectation Predictor
- 9.3.2 Affine Predictor
- 9.3.3 Linear Regression
- 9.4 The Viterbi Algorithm
- 9.5 Kalman Filter on Innovation Form
- 9.6 Viterbi Decoder
- 9.7 Graphical Models
- 9.7.1 Ising Distribution
- 9.7.2 Normal Distribution
- 9.7.3 Markov Random Field
- 9.8 Maximum Likelihood Estimation
- 9.8.1 Categorical Distribution
- 9.8.2 Ising Distribution
- 9.8.3 Normal Distribution
- 9.8.4 Generalizations
- 9.9 Relative Entropy and Cross Entropy
- 9.9.1 Gibbs' Inequality
- 9.9.2 Cross Entropy
- 9.10 The Expectation Maximization Algorithm
- 9.11 Mixture Models
- 9.12 Gibbs Sampling
- 9.13 Boltzmann Machine
- 9.14 Principal Component Analysis
- 9.14.1 Solution
- 9.14.2 Relation to Rank‐Constrained Optimization
- 9.15 Mutual Information
- 9.15.1 Channel Model
- 9.15.2 Orthogonal Case
- 9.15.3 Nonorthogonal Case
- 9.15.4 Relationship to PCA
- 9.16 Cluster Analysis
- Exercises
- Chapter 10 Supervised Learning
- 10.1 Linear Regression
- 10.1.1 Least‐Squares Estimation
- 10.1.2 Maximum Likelihood Estimation
- 10.1.3 Maximum a Posteriori Estimation
- 10.2 Regression in Hilbert Spaces
- 10.2.1 Infinite‐Dimensional LS Problem
- 10.2.2 The Kernel Trick
- 10.3 Gaussian Processes
- 10.3.1 Gaussian MAP Estimate
- 10.3.2 The Kernel Trick
- 10.4 Classification
- 10.4.1 Linear Regression
- 10.4.2 Logistic Regression
- 10.5 Support Vector Machines
- 10.5.1 Hebbian Learning
- 10.5.2 Quadratic Programming Formulation
- 10.5.3 Soft Margin Classification
- 10.5.4 The Dual Problem
- 10.5.5 Recovering the Primal Solution
- 10.5.6 The Kernel Trick.
- 10.6 Restricted Boltzmann Machine.