Introduction to mathematical statistics
For courses in mathematical statistics. Comprehensive coverage of mathematical statistics - with a proven approach Introduction to Mathematical Statistics by Hogg, McKean, and Craig enhances student comprehension and retention with numerous, illustrative examples and exercises. Classical statistical...
Otros Autores: | , , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Harlow, Essex :
Pearson
[2020]
|
Edición: | Eighth edition, global edition |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009749236706719 |
Tabla de Contenidos:
- Front Cover
- Title Page
- Copyright Page
- Dedication Page
- Contents
- Preface
- 1 Probability and Distributions
- 1.1 Introduction
- 1.2 Sets
- 1.2.1 Review of Set Theory
- 1.2.2 Set Functions
- 1.3 The Probability Set Function
- 1.3.1 Counting Rules
- 1.3.2 Additional Properties of Probability
- 1.4 Conditional Probability and Independence
- 1.4.1 Independence
- 1.4.2 Simulations
- 1.5 Random Variables
- 1.6 Discrete Random Variables
- 1.6.1 Transformations
- 1.7 Continuous Random Variables
- 1.7.1 Quantiles
- 1.7.2 Transformations
- 1.7.3 Mixtures of Discrete and Continuous Type Distributions
- 1.8 Expectation of a Random Variable
- 1.8.1 R Computation for an Estimation of the Expected Gain
- 1.9 Some Special Expectations
- 1.10 Important Inequalities
- 2 Multivariate Distributions
- 2.1 Distributions of Two Random Variables
- 2.1.1 Marginal Distributions
- 2.1.2 Expectation
- 2.2 Transformations: Bivariate Random Variables
- 2.3 Conditional Distributions and Expectations
- 2.4 Independent Random Variables
- 2.5 The Correlation Coefficient
- 2.6 Extension to Several Random Variables
- 2.6.1 *Multivariate Variance-Covariance Matrix
- 2.7 Transformations for Several Random Variables
- 2.8 Linear Combinations of Random Variables
- 3 Some Special Distributions
- 3.1 The Binomial and Related Distributions
- 3.1.1 Negative Binomial and Geometric Distributions
- 3.1.2 Multinomial Distribution
- 3.1.3 Hypergeometric Distribution
- 3.2 The Poisson Distribution
- 3.3 The Γ, χ2, and β Distributions
- 3.3.1 The χ2-Distribution
- 3.3.2 The β-Distribution
- 3.4 The Normal Distribution
- 3.4.1 *Contaminated Normals
- 3.5 The Multivariate Normal Distribution
- 3.5.1 Bivariate Normal Distribution
- 3.5.2 *Multivariate Normal Distribution, General Case
- 3.5.3 *Applications
- t- and F-Distributions.
- 3.6.1 The t-distribution
- 3.6.2 The F-distribution
- 3.6.3 Student's Theorem
- 3.7 *Mixture Distributions
- 4 Some Elementary Statistical Inferences
- 4.1 Sampling and Statistics
- 4.1.1 Point Estimators
- 4.1.2 Histogram Estimates of Pmfs and Pdfs
- 4.2 Confidence Intervals
- 4.2.1 Confidence Intervals for Difference in Means
- 4.2.2 Confidence Interval for Difference in Proportions
- 4.3 *Confidence Intervals for Parameters of Discrete Distributions
- 4.4 Order Statistics
- 4.4.1 Quantiles
- 4.4.2 Confidence Intervals for Quantiles
- 4.5 Introduction to Hypothesis Testing
- 4.6 Additional Comments About Statistical Tests
- 4.6.1 Observed Significance Level, p-value
- 4.7 Chi-Square Tests
- 4.8 The Method of Monte Carlo
- 4.8.1 Accept-Reject Generation Algorithm
- 4.9 Bootstrap Procedures
- 4.9.1 Percentile Bootstrap Confidence Intervals
- 4.9.2 Bootstrap Testing Procedures
- 4.10 *Tolerance Limits for Distributions
- 5 Consistency and Limiting Distributions
- 5.1 Convergence in Probability
- 5.1.1 Sampling and Statistics
- 5.2 Convergence in Distribution
- 5.2.1 Bounded in Probability
- 5.2.2 Δ-Method
- 5.2.3 Moment Generating Function Technique
- 5.3 Central Limit Theorem
- 5.4 *Extensions to Multivariate Distributions
- 6 Maximum Likelihood Methods
- 6.1 Maximum Likelihood Estimation
- 6.2 Rao-Cram´er Lower Bound and Efficiency
- 6.3 Maximum Likelihood Tests
- 6.4 Multiparameter Case: Estimation
- 6.5 Multiparameter Case: Testing
- 6.6 The EM Algorithm
- 7 Sufficiency
- 7.1 Measures of Quality of Estimators
- 7.2 A Sufficient Statistic for a Parameter
- 7.3 Properties of a Sufficient Statistic
- 7.4 Completeness and Uniqueness
- 7.5 The Exponential Class of Distributions
- 7.6 Functions of a Parameter
- 7.6.1 Bootstrap Standard Errors
- 7.7 The Case of Several Parameters.
- 7.8 Minimal Sufficiency and Ancillary Statistics
- 7.9 Sufficiency, Completeness, and Independence
- 8 Optimal Tests of Hypotheses
- 8.1 Most Powerful Tests
- 8.2 Uniformly Most Powerful Tests
- 8.3 Likelihood Ratio Tests
- 8.3.1 Likelihood Ratio Tests for Testing Means of Normal Distributions
- 8.3.2 Likelihood Ratio Tests for Testing Variances of Normal Distributions
- 8.4 *The Sequential Probability Ratio Test
- 8.5 *Minimax and Classification Procedures
- 8.5.1 Minimax Procedures
- 8.5.2 Classification
- 9 Inferences About Normal Linear Models
- 9.1 Introduction
- 9.2 One-Way ANOVA
- 9.3 Noncentral χ2 and F-Distributions
- 9.4 Multiple Comparisons
- 9.5 Two-Way ANOVA
- 9.5.1 Interaction Between Factors
- 9.6 A Regression Problem
- 9.6.1 Maximum Likelihood Estimates
- 9.6.2 *Geometry of the Least Squares Fit
- 9.7 A Test of Independence
- 9.8 The Distributions of Certain Quadratic Forms
- 9.9 The Independence of Certain Quadratic Forms
- 10 Nonparametric and Robust Statistics
- 10.1 Location Models
- 10.2 Sample Median and the Sign Test
- 10.2.1 Asymptotic Relative Efficiency
- 10.2.2 Estimating Equations Based on the Sign Test
- 10.2.3 Confidence Interval for the Median
- 10.3 Signed-Rank Wilcoxon
- 10.3.1 Asymptotic Relative Efficiency
- 10.3.2 Estimating Equations Based on Signed-Rank Wilcoxon
- 10.3.3 Confidence Interval for the Median
- 10.3.4 Monte Carlo Investigation
- 10.4 Mann-Whitney-Wilcoxon Procedure
- 10.4.1 Asymptotic Relative Efficiency
- 10.4.2 Estimating Equations Based on the Mann-Whitney- Wilcoxon
- 10.4.3 Confidence Interval for the Shift Parameter Δ
- 10.4.4 Monte Carlo Investigation of Power
- 10.5 *General Rank Scores
- 10.5.1 Efficacy
- 10.5.2 Estimating Equations Based on General Scores
- 10.5.3 Optimization: Best Estimates
- 10.6 *Adaptive Procedures
- 10.7 Simple Linear Model.
- 10.8 Measures of Association
- 10.8.1 Kendall's τ
- 10.8.2 Spearman's Rho
- 10.9 Robust Concepts
- 10.9.1 Location Model
- 10.9.2 Linear Model
- 11 Bayesian Statistics
- 11.1 Bayesian Procedures
- 11.1.1 Prior and Posterior Distributions
- 11.1.2 Bayesian Point Estimation
- 11.1.3 Bayesian Interval Estimation
- 11.1.4 Bayesian Testing Procedures
- 11.1.5 Bayesian Sequential Procedures
- 11.2 More Bayesian Terminology and Ideas
- 11.3 Gibbs Sampler
- 11.4 Modern Bayesian Methods
- 11.4.1 Empirical Bayes
- A Mathematical Comments
- A.1 Regularity Conditions
- A.2 Sequences
- B R Primer
- B.1 Basics
- B.2 Probability Distributions
- B.3 R Functions
- B.4 Loops
- B.5 Input and Output
- B.6 Packages
- C Lists of Common Distributions
- D Tables of Distributions
- E References
- F Answers to Selected Exercises
- Index
- Back Cover.