Gaussian processes for machine learning
A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines.
Autor principal: | |
---|---|
Otros Autores: | |
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Cambridge, Mass. :
MIT Press
c2006.
|
Edición: | 1st ed |
Colección: | Adaptive computation and machine learning.
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009746186906719 |
Tabla de Contenidos:
- Intro
- Series Foreword
- Preface
- Symbols and Notation
- Chapter 1 Introduction
- Chapter 2 Regression
- Chapter 3 Classification
- Chapter 4 Covariance functions
- Chapter 5 Model Selection and Adaptation of Hyperparameters
- Chapter 6 Relationships between GPs and Other Models
- Chapter 7 Theoretical Perspectives
- Chapter 8 Approximation Methods for Large Datasets
- Chapter 9 Further Issues and Conclusions
- Appendix A Mathematical Background
- Appendix B Gaussian Markov Processes
- Appendix C Datasets and Code
- Bibliography
- Author Index
- Subject Index.