Twisted Isospectrality, Homological Wideness, and Isometry A Sample of Algebraic Methods in Isospectrality
The question of reconstructing a geometric shape from spectra of operators (such as the Laplace operator) is decades old and an active area of research in mathematics and mathematical physics. This book focusses on the case of compact Riemannian manifolds, and, in particular, the question whether on...
Otros Autores: | , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Cham :
Springer International Publishing
2023.
|
Edición: | 1st ed. 2023. |
Colección: | SpringerBriefs in Mathematics,
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009743534206719 |
Tabla de Contenidos:
- Chapter. 1. Introduction
- Part I: Leitfaden
- Chapter. 2. Manifold and orbifold constructions
- Chapter. 3. Spectra, group representations and twisted Laplacians
- Chapter. 4. Detecting representation isomorphism through twisted spectra
- Chapter. 5. Representations with a unique monomial structure
- Chapter. 6. Construction of suitable covers and proof of the main theorem
- Chapter. 7. Geometric construction of the covering manifold
- Chapter. 8. Homological wideness
- Chapter. 9. Examples of homologically wide actions
- Chapter. 10. Homological wideness, “class field theory” for covers, and a number theoretical analogue
- Chapter. 11. Examples concerning the main result
- Chapter. 12. Length spectrum
- References
- Index.