Data augmentation with Python enhance accuracy in deep learning with practical data augmentation for image, text, audio and tabular data

Boost your AI and generative AI accuracy using real-world datasets with over 150 functional object-oriented methods and open source libraries Purchase of the print or Kindle book includes a free PDF eBook Key Features Explore beautiful, customized charts and infographics in full color Work with full...

Descripción completa

Detalles Bibliográficos
Otros Autores: Haba, Duc, author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Birmingham, England : Packt Publishing [2023]
Edición:1st ed
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009742735506719
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright
  • Dedication
  • Foreword
  • Contributors
  • Table of Contents
  • Preface
  • Part 1: Data Augmentation
  • Chapter 1: Data Augmentation Made Easy
  • Data augmentation role
  • Data input types
  • Image definition
  • Text definition
  • Audio definition
  • Tabular data definition
  • Python Notebook
  • Google Colab
  • Additional Python Notebook options
  • Installing Python Notebook
  • Programming styles
  • Source control
  • The PacktDataAug class
  • Naming convention
  • Extend base class
  • Referencing a library
  • Exporting Python code
  • Pluto
  • Summary
  • Chapter 2: Biases in Data Augmentation
  • Computational biases
  • Human biases
  • Systemic biases
  • Python Notebook
  • Python Notebook
  • GitHub
  • Pluto
  • Verifying Pluto
  • Kaggle ID
  • Image biases
  • State Farm distracted drivers detection
  • Nike shoes
  • Grapevine leaves
  • Text biases
  • Netflix
  • Amazon reviews
  • Summary
  • Part 2: Image Augmentation
  • Chapter 3: Image Augmentation for Classification
  • Geometric transformations
  • Flipping
  • Cropping
  • Resizing
  • Padding
  • Rotating
  • Translation
  • Noise injection
  • Photometric transformations
  • Basic and classic
  • Advanced and exotic
  • Random erasing
  • Combining
  • Reinforcing your learning through Python code
  • Pluto and the Python Notebook
  • Real-world image datasets
  • Image augmentation library
  • Geometric transformation filters
  • Photographic transformations
  • Random erasing
  • Combining
  • Summary
  • Chapter 4: Image Augmentation for Segmentation
  • Geometric and photometric transformations
  • Real-world segmentation datasets
  • Python Notebook and Pluto
  • Real-world data
  • Pandas
  • Viewing data images
  • Reinforcing your learning
  • Horizontal flip
  • Vertical flip
  • Rotating
  • Resizing and cropping
  • Transpose
  • Lighting
  • FancyPCA
  • Combining
  • Summary.
  • Part 3: Text Augmentation
  • Chapter 5: Text Augmentation
  • Character augmenting
  • Word augmenting
  • Sentence augmentation
  • Text augmentation libraries
  • Real-world text datasets
  • The Python Notebook and Pluto
  • Real-world NLP datasets
  • Pandas
  • Visualizing NLP data
  • Reinforcing learning through Python Notebook
  • Character augmentation
  • Word augmenting
  • Summary
  • Chapter 6: Text Augmentation with Machine Learning
  • Machine learning models
  • Word augmenting
  • Sentence augmenting
  • Real-world NLP datasets
  • Python Notebook and Pluto
  • Verify
  • Real-world NLP data
  • Pandas
  • Viewing the text
  • Reinforcing your learning through the Python Notebook
  • Word2Vec word augmenting
  • BERT
  • RoBERTa
  • Back translation
  • Sentence augmentation
  • Summary
  • Part 4: Audio Data Augmentation
  • Chapter 7: Audio Data Augmentation
  • Standard audio augmentation techniques
  • Time stretching
  • Time shifting
  • Pitch shifting
  • Polarity inversion
  • Noise injection
  • Filters
  • Low-pass filter
  • High-pass filter
  • Band-pass filter
  • Low-shelf filter
  • High-shelf filter
  • Band-stop filter
  • Peak filter
  • Audio augmentation libraries
  • Real-world audio datasets
  • Python Notebook and Pluto
  • Real-world data and pandas
  • Listening and viewing
  • Reinforcing your learning
  • Time shifting
  • Time stretching
  • Pitch scaling
  • Noise injection
  • Polarity inversion
  • Low-pass filter
  • Band-pass filter
  • High-pass and other filters
  • Summary
  • Chapter 8: Audio Data Augmentation with Spectrogram
  • Initializing and downloading
  • Audio Spectrogram
  • Various Spectrogram formats
  • Mel-spectrogram and Chroma STFT plots
  • Spectrogram augmentation
  • Spectrogram images
  • Summary
  • Part 5: Tabular Data Augmentation
  • Chapter 9: Tabular Data Augmentation
  • Tabular augmentation libraries
  • Augmentation categories.
  • Real-world tabular datasets
  • Exploring and visualizing tabular data
  • Data structure
  • First graph view
  • Checksum
  • Specialized plots
  • Exploring the World Series data
  • Transforming augmentation
  • Robust scaler
  • Standard scaler
  • Capping
  • Interaction augmentation
  • Regression augmentation
  • Operator augmentation
  • Mapping augmentation
  • Extraction augmentation
  • Summary
  • Index
  • About Packt
  • Other Books You May Enjoy.