Learning to Quantify

This open access book provides an introduction and an overview of learning to quantify (a.k.a. “quantification”), i.e. the task of training estimators of class proportions in unlabeled data by means of supervised learning. In data science, learning to quantify is a task of its own related to classif...

Descripción completa

Detalles Bibliográficos
Autores principales: Esuli, Andrea. author (author), Fabris, Alessandro. author, Moreo, Alejandro. author, Sebastiani, Fabrizio. author
Formato: Libro electrónico
Idioma:Inglés
Publicado: Cham : Springer International Publishing 2023.
Edición:1st ed. 2023.
Colección:The Information Retrieval Series, 47
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009741124606719
Tabla de Contenidos:
  • - 1. The Case for Quantification. - 2. Applications of Quantification. - 3. Evaluation of Quantification Algorithms. - 4. Methods for Learning to Quantify. - 5. Advanced Topics. - 6. The Quantification Landscape. - 7. The Road Ahead.