Numerical Modeling Of Superconducting Applications Simulation Of Electromagnetics, Thermal Stability, Thermo-hydraulics And Mechanical Effects In Large-scale Superconducting Devices
This book aims to present an introduction to numerical modeling of different aspects of large-scale superconducting applications: electromagnetics, thermal, mechanics and thermo-hydraulics. The importance of computational modeling to advance current superconductor research cannot be overlooked, espe...
Otros Autores: | , , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Singapore :
World Scientific Publishing Company
2023.
|
Colección: | World Scientific Series In Applications Of Superconductivity And Related Phenomena
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009741099306719 |
Tabla de Contenidos:
- Cover
- Title page
- Copyright
- Contents
- Introduction
- 1. Electromagnetic Modeling of Superconductors
- 1.1. Introduction
- 1.1.1. Maxwell equations in quasimagnetostatics
- 1.1.1.1. Faraday's integral law
- 1.1.2. Macroscopic electromagnetic properties of superconductors
- 1.1.3. Vector and scalar potentials and their relation to the sources
- 1.1.3.1. Long straight conductors (infinite)
- 1.1.3.2. Axial symmetry
- 1.1.4. Solution to the Laplace equation for electrostatics
- 1.1.5. Integral relation between B and J
- 1.1.6. Current potentials
- 1.1.6.1. Divergence-free gauge of T
- 1.1.6.2. Magnetic-field gauge
- 1.1.6.3. Current potential as magnetization
- 1.1.7. Calculation of local dissipation and AC loss
- 1.1.7.1. Fundamental aspects of the local loss dissipation
- 1.1.7.2. Hysteresis loss of magnetic materials
- 1.1.7.3. Conductors and superconductors under uniform applied fields
- 1.2. Analytical Formulas and Main Electromagnetic Behavior
- 1.2.1. Hysteresis currents
- 1.2.1.1. Infinite cylinder under axial applied magnetic field
- 1.2.1.2. Infinite slab under parallel applied field
- 1.2.1.3. Circular wire with transport current
- 1.2.1.4. Elliptical wire with transport current
- 1.2.1.5. Thin strip under applied magnetic field
- 1.2.1.6. Thin strip with transport current
- 1.2.1.7. Universal scaling law for the power-law E(J) relation
- 1.2.2. Eddy currents
- 1.2.2.1. Low-frequency limit
- 1.2.2.2. Whole frequency range
- 1.2.3. Coupling currents
- 1.2.3.1. On the decomposition of AC loss into eddy, coupling, and superconductor contributions
- 1.2.3.2. Two slab filaments connected by normal conductor
- 1.3. Numerical Methods
- 1.3.1. Finite element methods
- 1.3.1.1. H formulation
- 1.3.1.2. A-ϕ formulation
- 1.3.1.3. T-Ω formulation
- 1.3.1.4. Combined formulations.
- 1.3.2. Variational methods
- 1.3.2.1. J-ϕ formulation
- 1.3.2.2. T formulation
- 1.3.2.3. H formulation
- 1.3.2.4. H-ψ formulation
- 1.3.2.5. Interaction with nonlinear magnetic materials
- 1.3.3. Integro-differential methods
- 1.3.3.1. J integral formulation
- 1.3.3.2. T integral formulation
- 1.3.4. Spectral methods
- 1.3.5. Particular issues for three dimensions
- 1.4. Modeling of Power Applications
- 1.4.1. Numerical modeling of individual wires
- 1.4.1.1. Dependence of Jc on magnetic field
- 1.4.1.2. Dependence of Jc on position
- 1.4.1.3. Simulation of magnetic materials
- 1.4.1.4. Dynamic resistance
- 1.4.2. Interacting tapes
- 1.4.3. 3D modeling
- 1.4.4. Rotating machines
- Acknowledgments
- References
- 2. Introduction to Stability and Quench Protection
- 2.1. Margins to Quench
- 2.1.1. Minimum quench energy
- 2.1.1.1. Numerical modeling of MQE
- 2.1.1.2. MQE simulations
- 2.1.2. Margins in magnet load line
- 2.2. Classifying Quenches
- 2.2.1. Devred's classification of quenches
- 2.2.2. Wilson's classification of quenches
- 2.3. Engineering Methodology in Quench Protection
- 2.3.1. Model
- 2.3.2. Design
- 2.3.3. Simulation
- 2.3.4. Experiment
- 2.4. Numerical Modeling of a Quench Event
- 2.4.1. Input and output of a quench simulation
- 2.4.1.1. Magnetic flux density distribution
- 2.4.1.2. Operation conditions
- 2.4.1.3. Post-processing data
- 2.4.2. Spatial and temporal discretization in a FEM based tool
- 2.4.2.1. Spatial discretization
- 2.4.2.2. Temporal discretization
- 2.4.3. Triggering the quench in the simulation of an HTS magnet
- 2.4.4. Reducing modeling domain to speed up quench simulations for HTS magnets
- 2.4.4.1. Modeling domain
- 2.4.4.2. Simulation results
- 2.4.5. Quench analysis of an R&
- D REBCO magnet.
- 2.5. Design of Quench Protection Heaters for Nb3Sn Accelerator Magnets
- 2.5.1. R&
- D of Nb3Sn quadrupole magnet
- 2.5.2. Heater technology and target variables for optimization
- 2.5.3. Modeling the heater's efficiency
- 2.5.4. Guidelines for parametric optimization of heaters
- 2.5.5. Simulations for the LHQ heater design
- 2.5.6. Testing the designed heater layout
- Acknowledgements
- References
- 3. Finite Element Structural Modeling
- 3.1. Introduction
- 3.2. HTS Tapes and Cables
- 3.3. FEA Research Areas
- 3.3.1. Single-tape simulations
- 3.3.2. Cable simulations
- 3.4. Modeling Techniques for Single Tapes
- 3.4.1. Finite element software and settings
- 3.4.2. REBCO-coated conductor architecture
- 3.4.3. Element types
- 3.4.4. Meshing
- 3.4.5. Material properties
- 3.4.6. Boundary conditions and loads
- 3.5. Modeling Techniques for Cables
- 3.5.1. Model simplifications
- 3.5.2. Element types
- 3.5.3. Meshing
- 3.5.4. Material properties
- 3.5.5. Contact relationships
- 3.5.6. Boundary conditions and loads
- 3.6. Postprocessing and Results
- 3.6.1. Simulation output results
- 3.6.2. Critical current prediction
- 3.6.3. Single-tape results
- 3.6.4. Cable results
- References
- 4. Thermal-Hydraulics of Superconducting Magnets
- 4.1. Applications of Superconducting Magnets and Related Topologies/Geometries
- 4.1.1. Magnetically confined nuclear fusion experiments
- 4.1.2. Particle accelerators
- 4.1.3. Others
- 4.1.3.1. Gyrotrons
- 4.1.3.2. Medical
- 4.1.3.3. Power grid
- 4.2. Superconducting Magnet Cooling Methods
- 4.2.1. Cooling fluids
- 4.2.1.1. Helium
- 4.2.1.2. Hydrogen
- 4.2.1.3. Neon
- 4.2.1.4. Nitrogen
- 4.2.2. Cooling options
- 4.2.2.1. Forced flow
- 4.2.2.2. Conduction
- 4.2.2.3. Pool
- 4.2.3. Cryoplant description
- 4.2.3.1. Refrigerator
- 4.2.3.2. SHe loop.
- 4.2.3.3. Interfaces
- 4.2.4. Solid properties
- 4.2.4.1. Metals
- 4.2.4.2. Superconductor
- 4.2.4.3. Insulations
- 4.3. Modeling
- 4.3.1. Space scales
- 4.3.2. Time scales
- 4.4. Forced-Flow CICC Superconductor Hydraulics
- 4.4.1. Multiple flow regions
- 4.4.1.1. Bundle
- 4.4.1.2. Hole
- 4.4.1.3. Coupling between bundle and hole
- 4.4.2. Friction factors
- 4.5. Forced-Flow CICC Thermal-Hydraulics
- 4.5.1. Heat transfer coolant-solids
- 4.5.2. Heat transfer between different solids
- 4.5.3. Heat transfer between different coolant regions
- 4.6. Heat Transfer Mechanisms in the Magnet
- 4.6.1. Heat transfer within the winding
- 4.6.2. Heat transfer within the magnet structures
- 4.6.2.1. Cooling of the coil casing
- 4.6.3. Heat transfer between structures and winding
- 4.6.3.1. Issues in the ground insulation modeling
- 4.7. Relevant TH Transients
- 4.7.1. Cool down
- 4.7.2. Normal operation
- 4.7.3. Off-normal operation
- 4.7.3.1. Stability and quench
- 4.7.3.2. Fast discharge/current ramps
- 4.7.3.3. Loss of flow/coolant accidents
- 4.8. Available Models and Experimental Facilities
- 4.8.1. Thermal-hydraulic codes
- 4.8.1.1. Venecia
- 4.8.1.2. 4C
- 4.8.1.3. Supermagnet
- 4.8.1.4. Others
- 4.8.2. Conductor test facilities
- 4.8.3. Magnets test facilities
- 4.8.4. Available experiments
- 4.8.4.1. Superconducting tokamaks in operation
- 4.8.4.2. Superconducting stellarators in operation
- References
- Index.