Computer Vision on AWS Build and Deploy Real-World CV Solutions with Amazon Rekognition, Lookout for Vision, and SageMaker

Develop scalable computer vision solutions for real-world business problems and discover scaling, cost reduction, security, and bias mitigation best practices with AWS AI/ML services Purchase of the print or Kindle book includes a free PDF eBook Key Features Learn how to quickly deploy and automate...

Descripción completa

Detalles Bibliográficos
Autor principal: Mullennex, Lauren (-)
Otros Autores: Bachmeier, Nate, Rao, Jay
Formato: Libro electrónico
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, Limited 2023.
Edición:1st ed
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009731836506719
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright and Credits
  • Contributors
  • Table of Contents
  • Preface
  • Part 1: Introduction to CV on AWS and Amazon Rekognition
  • Chapter 1: Computer Vision Applications and AWS AI/ML Services Overview
  • Technical requirements
  • Understanding CV
  • CV architecture and applications
  • Data processing and feature engineering
  • Data labeling
  • Solving business challenges with CV
  • Contactless check-in and checkout
  • Video analysis
  • Content moderation
  • CV at the edge
  • Exploring AWS AI/ML services
  • AWS AI services
  • Amazon SageMaker
  • Setting up your AWS environment
  • Creating an Amazon SageMaker Jupyter notebook instance
  • Summary
  • Chapter 2: Interacting with Amazon Rekognition
  • Technical requirements
  • The Amazon Rekognition console
  • Using the Label detection demo
  • Examining the API request
  • Examining the API response
  • Other demos
  • Monitoring Amazon Rekognition
  • Quick recap
  • Detecting Labels using the API
  • Uploading the images to S3
  • Initializing the boto3 client
  • Detect the Labels
  • Using the Label information
  • Using bounding boxes
  • Quick recap
  • Cleanup
  • Summary
  • Chapter 3: Creating Custom Models with Amazon Rekognition Custom Labels
  • Technical requirements
  • Introducing Amazon Rekognition Custom Labels
  • Benefits of Amazon Rekognition Custom Labels
  • Creating a model using Rekognition Custom Labels
  • Deciding the model type based on your business goal
  • Creating a model
  • Improving the model
  • Starting your model
  • Analyzing an image
  • Stopping your model
  • Building a model to identify Packt's logo
  • Step 1 - Collecting your images
  • Step 2 - Creating a project
  • Step 3 - Creating training and test datasets
  • Step 4 - Adding labels to the project
  • Step 5 - Drawing bounding boxes on your training and test datasets
  • Step 6 - Training your model.
  • Validating that the model works
  • Step 1 - Starting your model
  • Step 2 - Analyzing an image with your model
  • Step 3 - Stopping your model
  • Summary
  • Part 2: Applying CV to Real-World Use Cases
  • Chapter 4: Using Identity Verification to Build a Contactless Hotel Check-In System
  • Technical requirements
  • Prerequisites
  • Creating the image bucket
  • Uploading the sample images
  • Creating the profile table
  • Introducing collections
  • Creating a collection
  • Describing a collection
  • Deleting a collection
  • Quick recap
  • Describing the user journeys
  • Registering a new user
  • Authenticating a user
  • Registering a new user with an ID card
  • Updating the user profile
  • Implementing the solution
  • Checking image quality
  • Indexing face information
  • Search existing faces
  • Quick recap
  • Supporting ID cards
  • Reading an ID card
  • Using the CompareFaces API
  • Quick recap
  • Guidance for identity verification on AWS
  • Solution overview
  • Deployment process
  • Cleanup
  • Summary
  • Chapter 5: Automating a Video Analysis Pipeline
  • Technical requirements
  • Creating the video bucket
  • Uploading content to Amazon S3
  • Creating the person-tracking topic
  • Subscribing a message queue to the person-tracking topic
  • Creating the person-tracking publishing role
  • Setting up IP cameras
  • Quick recap
  • Using IP cameras
  • Installing OpenCV
  • Installing additional modules
  • Connecting with OpenCV
  • Viewing the frame
  • Uploading the frame
  • Reporting frame metrics
  • Quick recap
  • Using the PersonTracking API
  • Uploading the video to Amazon S3
  • Using the StartPersonTracking API
  • Receiving the completion notification
  • Using the GetPersonTracking API
  • Reviewing the GetPersonTracking response
  • Viewing the frame
  • Quick recap
  • Summary
  • Chapter 6: Moderating Content with AWS AI Services
  • Technical requirements.
  • Moderating images
  • Using the DetectModerationLabels API
  • Using top-level categories
  • Using secondary-level categories
  • Putting it together
  • Quick recap
  • Moderating videos
  • Creating the supporting resources
  • Finding the resource ARNs
  • Uploading the sample video to Amazon S3
  • Using the StartContentModeration API
  • Examining the completion notification
  • Using the GetContentModeration API
  • Quick recap
  • Using AWS Lambda to automate the workflow
  • Implement the Start Analysis Handler
  • Implementing the Get Results Handler
  • Publishing function changes
  • Experiment with the end-to-end
  • Summary
  • Part 3: CV at the edge
  • Chapter 7: Introducing Amazon Lookout for Vision
  • Technical requirements
  • Introducing Amazon Lookout for Vision
  • The benefits of Amazon Lookout for Vision
  • Creating a model using Amazon Lookout for Vision
  • Choosing the model type based on your business goals
  • Creating a model
  • Starting your model
  • Analyzing an image
  • Stopping your model
  • Building a model to identify damaged pills
  • Step 1 - collecting your images
  • Step 2 - creating a project
  • Step 3 - creating the training and test datasets
  • Step 4 - verifying the dataset
  • Step 5 - training your model
  • Validating it works
  • Step 1 - trial detection
  • Step 2 - starting your model
  • Step 3 - analyzing an image with your model
  • Step 4 - stopping your model
  • Summary
  • Chapter 8: Detecting Manufacturing Defects Using CV at the Edge
  • Technical requirements
  • Understanding ML at the edge
  • Deploying a model at the edge using Lookout for Vision and AWS IoT Greengrass
  • Step 1 - Launch an Amazon EC2 instance
  • Step 2 - Create an IAM role and attach it to an EC2 instance
  • Step 3 - Install AWS IoT Greengrass V2
  • Step 4 - Upload training and test datasets to S3
  • Step 5 - Create a project.
  • Step 6 - Create training and test datasets
  • Step 7 - Train the model
  • Step 8 - Package the model
  • Step 9 - Configure IoT Greengrass IAM permissions
  • Step 10 - Deploy the model
  • Step 11 - Run inference on the model
  • Step 12 - Clean up resources
  • Summary
  • Part 4: Building CV Solutions with Amazon SageMaker
  • Chapter 9: Labeling Data with Amazon SageMaker Ground Truth
  • Technical requirements
  • Introducing Amazon SageMaker Ground Truth
  • Benefits of Amazon SageMaker Ground Truth
  • Automated data labeling
  • Labeling Packt logos in images using Amazon SageMaker Ground Truth
  • Step 1 - collect your images
  • Step 2 - create a labeling job
  • Step 3 - specify the job details
  • Step 4 - specify worker details
  • Step 5 - providing labeling instructions
  • Step 6 - start labeling
  • Step 7 - output data
  • Importing the labeled data with Rekognition Custom Labels
  • Step 1 - create the project
  • Step 2 - create training and test datasets
  • Step 3 - model training
  • Summary
  • Chapter 10: Using Amazon SageMaker for Computer Vision
  • Technical requirements
  • Fetching the LabelMe-12 dataset
  • Installing TensorFlow 2.0
  • Installing matplotlib
  • Using the built-in image classifier
  • Upload the dataset to Amazon S3
  • Prepare the job channels
  • Start the training job
  • Monitoring and troubleshooting
  • Quick recap
  • Handling binary metadata files
  • Declaring the Label class
  • Reading the annotations file
  • Declaring the Annotation class
  • Validate parsing the file
  • Restructure the files
  • Load the dataset
  • Quick recap
  • Summary
  • Part 5: Best Practices for Production-Ready CV Workloads
  • Chapter 11: Integrating Human-in-the-Loop with Amazon Augmented AI (A2I)
  • Technical requirements
  • Introducing Amazon A2I
  • Core concepts of Amazon A2I
  • Learning how to build a human review workflow.
  • Creating a labeling workforce
  • Setting up an A2I human review workflow or flow definition
  • Initiating a human loop
  • Leveraging Amazon A2I with Amazon Rekognition to review images
  • Step 1 - Collecting your images
  • Step 2 - Creating a work team
  • Step 3 - Creating a human review workflow
  • Step 4 - Starting a human loop
  • Step 5 - Checking the human loop status
  • Step 6 - Reviewing the output data
  • Summary
  • Chapter 12: Best Practices for Designing an End-to-End CV Pipeline
  • Defining a problem that CV can solve and processing data
  • Developing a CV model
  • Training
  • Evaluating
  • Tuning
  • Deploying and monitoring a CV model
  • Shadow testing
  • A/B testing
  • Blue/Green deployment strategy
  • Monitoring
  • Developing an MLOps strategy
  • SageMaker MLOps features
  • Workflow automation tools
  • Using the AWS Well-Architected Framework
  • Cost optimization
  • Operational excellence
  • Reliability
  • Performance efficiency
  • Security
  • Sustainability
  • Summary
  • Chapter 13: Applying AI Governance in CV
  • Understanding AI governance
  • Defining risks, documentation, and compliance
  • Data risks and detecting bias
  • Auditing, traceability, and versioning
  • Monitoring and visibility
  • MLOps
  • Responsibilities of business stakeholders
  • Applying AI governance in CV
  • Types of biases
  • Mitigating bias in identity verification workflows
  • Using Amazon SageMaker for governance
  • ML governance capabilities with Amazon SageMaker
  • Amazon SageMaker Clarify for explainable AI
  • Summary
  • Index
  • Other Books You May Enjoy.