Signal processing for active control

Signal Processing for Active Control sets out the signal processing and automatic control techniques that are used in the analysis and implementation of active systems for the control of sound and vibration. After reviewing the performance limitations introduced by physical aspects of active contro...

Full description

Bibliographic Details
Main Author: Elliot, S. J. (-)
Format: eBook
Language:Inglés
Published: San Diego, Calif. ; London : Academic Press c2001.
Series:Signal processing and its applications.
Subjects:
See on Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009724837306719
Table of Contents:
  • Front Cover; Signal Processing for Active Control; Copyright Page; Contents; Series Preface; Dedication; Preface; Glossary; Chapter1. The Physical Basis for Active Control; 1.1.Introduction; 1.2.Control of wave transmission; 1.3.Control of power in infinite systems; 1.4. Strategies of control in finite systems; 1.5.Control of energy in finite systems; 1.6. Control of sound radiation from structures; 1.7. Local control of sound and vibration; Chapter 2. Optimal and Adaptive Digital Filters; 2.1.Introduction; 2.2.Structure of digital filters; 2.3. Optimal filters in the time domain
  • 2.4. Optimal filters in the transfortn Domain2.5.Multichannel optimal filters; 2.6. The LMS algorithm; 2.7. The RLS algorithm; 2.8.Frcquency-dornain adaptation; 2.9. Adaptive IIR filters; Chapter3. Single-Channel Feedforward Control; 3.1.Introduction; 3.2.Control of deterministic disturbances; 3.3. Optimal control of stochastic disturbances; 3.4. Adaptive FIR controllers; 3.5. Frequency-domain adaptation of FIR controllers; 3.6. Plant identification; 3.7. Adaptive IIR controllers; 3.8. Practical applications; Chapter 4. Multichannel Control of Tonal Disturbances; 4.1. Introduction
  • 4.2. Optinlal control of tonal disturbances4.3. Steepest-descent algorithms; 4.4. Robustness to plant uncertainties and plant tnodel errors; 4.5. Iterative least-squares algorithms; 4.6. Feedback control interpretation of adaptive feedforward systems; 4.7. Minimisation of the maximum level at any sensor; 4.8. Applications; Chapter 5. Multichannel Control of Stochastic Disturbances; 5.1. Introduction; 5.2. Optimal control in the time domain; 5.3. Optimal control in the transfom domain; 5.4. Adaptive algorithms in the time domain; 5.5. The preconditioned LMS algorithm
  • 5.6. Adaptive algorithms in the frequency domain5.7. Application: controlling road noise in vehicles; Chapter 6. Design and Perfomance of Feedback Controllers; 6.1. Introduction; 6.2. Analogue controllers; 6.3. Digital controllers; 6.4. Internal model control (IMC); 6.5. Optimal control in the titne domain; 6.6. Optimal control in the transform domain; 6.7. Multichannel feedback controllers; 6.8. Robust stahility for multichannel systems; 6.9. Optimal multichannel control; 6.10. Application: active headrest; Chapter7. Adaptive Feedback Controllers; 7.1. Introduction
  • 7.2. Tirne-domain adaptation7.3. Frequency-domain adaptation; 7.4. Combined feedback and feedforward control; 7.5. Combined analogue and digital controllers; 7.6. Application: active headsets; Chapter8. Active Control of Nonlinear Systems; 8.1. Introduction; 8.2. Analytical descriptions of nonlinear systems; 8.3. Neural networks; 8.4. Adaptive feedforward control; 8.5. Chaotic systems; 8.6. Control of chaotic behaviour; Chapter 9. Optimisation of Transducer Location; 9.1. The optilnisation problcnl; 9.2. Optimisation of secondary source and error sensor location
  • 9.3. Application of genetic algorithms