Change detection and image time-series analysis 1 : unsupervised methods 1 :
Change Detection and Image Time Series Analysis 1 presents a wide range of unsupervised methods for temporal evolution analysis through the use of image time series associated with optical and/or synthetic aperture radar acquisition modalities. Chapter 1 introduces two unsupervised approaches to mul...
Otros Autores: | , , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Hoboken, NJ :
John Wiley & Sons, Inc
[2022]
|
Edición: | 1st edition |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009724229906719 |
Tabla de Contenidos:
- Cover
- Half-Title Page
- Title Page
- Copyright Page
- Contents
- Preface
- List of Notations
- Chapter 1. Unsupervised Change Detection in Multitemporal Remote Sensing Images
- 1.1. Introduction
- 1.2. Unsupervised change detection in multispectral images
- 1.2.1. Related concepts
- 1.2.2. Open issues and challenges
- 1.2.3. Spectral-spatial unsupervised CD techniques
- 1.3. Unsupervised multiclass change detection approaches based on modeling spectral-spatial information
- 1.3.1. Sequential spectral change vector analysis (S2CVA)
- 1.3.2. Multiscale morphological compressed change vector analysis
- 1.3.3. Superpixel-level compressed change vector analysis
- 1.4. Dataset description and experimental setup
- 1.4.1. Dataset description
- 1.4.2. Experimental setup
- 1.5. Results and discussion
- 1.5.1. Results on the Xuzhou dataset
- 1.5.2. Results on the Indonesia tsunami dataset
- 1.6. Conclusion
- 1.7. Acknowledgements
- 1.8. References
- Chapter 2. Change Detection inTime Series of Polarimetric SAR Images
- 2.1. Introduction
- 2.1.1. The problem
- 2.1.2. Important concepts illustrated bymeans of the gamma distribution
- 2.2. Test theory and matrix ordering
- 2.2.1. Test for equality of two complex Wishart distributions
- 2.2.2. Test for equality of k-complex Wishart distributions
- 2.2.3. The block diagonal case
- 2.2.4. The Loewner order
- 2.3. The basic change detection algorithm
- 2.4. Applications
- 2.4.1. Visualizing changes
- 2.4.2. Fieldwise change detection
- 2.4.3. Directional changes using the Loewner ordering
- 2.4.4. Software availability
- 2.5. References
- Chapter 3. An Overview of Covariance-based Change Detection Methodologies in Multivariate SAR Image Time Series
- 3.1. Introduction
- 3.2. Dataset description
- 3.3. Statistical modeling of SAR images
- 3.3.1. The data.
- 3.3.2. Gaussian model
- 3.3.3. Non-Gaussian modeling
- 3.4. Dissimilarity measures
- 3.4.1. Problem formulation
- 3.4.2. Hypothesis testing statistics
- 3.4.3. Information-theoretic measures
- 3.4.4. Riemannian geometry distances
- 3.4.5. Optimal transport
- 3.4.6. Summary
- 3.4.7. Results of change detectors on the UAVSAR dataset
- 3.5. Change detection based on structured covariances
- 3.5.1. Low-rank Gaussian change detector
- 3.5.2. Low-rank compound Gaussian change detector
- 3.5.3. Results of low-rank change detectors on the UAVSAR dataset
- 3.6. Conclusion
- 3.7. References
- Chapter 4. Unsupervised Functional Information Clustering in Extreme Environments from Filter Banks and Relative Entropy
- 4.1. Introduction
- 4.2. Parametric modeling of convnet features
- 4.3. Anomaly detection in image time series
- 4.4. Functional image time series clustering
- 4.5. Conclusion
- 4.6. References
- Chapter 5. Thresholds and Distances to Better Detect Wet Snow over Mountains with Sentinel-1 Image Time Series
- 5.1. Introduction
- 5.2. Test area and data
- 5.3. Wet snow detection using Sentinel-1
- 5.4. Metrics to detect wet snow
- 5.5. Discussion
- 5.6. Conclusion
- 5.7. Acknowledgements
- 5.8. References
- Chapter 6. Fractional Field Image Time Series Modeling and Application to Cyclone Tracking
- 6.1. Introduction
- 6.2. Random field model of a cyclone texture
- 6.2.1. Cyclone texture feature
- 6.2.2. Wavelet-based power spectral densities and cyclone
- 6.2.3. Fractional spectral power decay model
- 6.3. Cyclone field eye detection and tracking
- 6.3.1. Cyclone eye detection
- 6.3.2. Dynamic fractal field eye tracking
- 6.4. Cyclone field intensity evolution prediction
- 6.5. Discussion
- 6.6. Acknowledgements
- 6.7. References.
- Chapter 7. Graph of Characteristic Points for Texture Tracking: Application to Change Detection and Glacier Flow Measurement from SAR Image
- 7.1. Introduction
- 7.2. Texture representation and characterization using local extrema
- 7.2.1. Motivation and approach
- 7.2.2. Local extrema keypoints within SAR images
- 7.3. Unsupervised change detection
- 7.3.1. Proposed framework
- 7.3.2. Weighted graph construction from keypoints
- 7.3.3. Change measure (CM) generation
- 7.4. Experimental study
- 7.4.1. Data description and evaluation criteria
- 7.4.2. Change detection results
- 7.4.3. Sensitivity to parameters
- 7.4.4. Comparison with the NLM model
- 7.4.5. Analysis of the algorithm complexity
- 7.5. Application to glacier flow measurement
- 7.5.1. Proposed method
- 7.5.2. Results
- 7.6. Conclusion
- 7.7. References
- Chapter 8. Multitemporal Analysis of Sentinel-1/2 Images for Land Use Monitoring at Regional Scale
- 8.1. Introduction
- 8.2. Proposed method
- 8.2.1. Test site and data
- 8.3. SAR processing
- 8.4. Optical processing
- 8.5. Combination layer
- 8.6. Results
- 8.7. Conclusion
- 8.8. References
- Chapter 9. Statistical Difference Models for Change Detection in Multispectral Images
- 9.1. Introduction
- 9.2. Overview of the change detection problem
- 9.2.1. Change detection methods for multispectral images
- 9.2.2. Challenges addressed in this chapter
- 9.3. The Rayleigh-Rice mixture model for the magnitude of the difference image
- 9.3.1. Magnitude image statistical mixture model
- 9.3.2. Bayesian decision
- 9.3.3. Numerical approach to parameter estimation
- 9.4. A compound multiclass statistical model of the difference image
- 9.4.1. Difference image statistical mixture model
- 9.4.2. Magnitude image statistical mixture model
- 9.4.3. Bayesian decision.
- 9.4.4. Numerical approach to parameter estimation
- 9.5. Experimental results
- 9.5.1. Dataset description
- 9.5.2. Experimental setup
- 9.5.3. Test 1: Two-class Rayleigh-Rice mixture model
- 9.5.4. Test 2: Multiclass Rician mixture model
- 9.6. Conclusion
- 9.7. References
- List of Authors
- Index
- Summary of Volume 2
- EULA.