Brain-computer interface using deep learning applications

BRAIN-COMPUTER INTERFACE It covers all the research prospects and recent advancements in the brain-computer interface using deep learning. The brain-computer interface (BCI) is an emerging technology that is developing to be more functional in practice. The aim is to establish, through experiences w...

Descripción completa

Detalles Bibliográficos
Otros Autores: Sumithra, M. G., editor (editor)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Hoboken, New Jersey : John Wiley & Sons [2023]
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009724218606719
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright Page
  • Contents
  • Preface
  • Chapter 1 Introduction to Brain-Computer Interface: Applications and Challenges
  • 1.1 Introduction
  • 1.2 The Brain - Its Functions
  • 1.3 BCI Technology
  • 1.3.1 Signal Acquisition
  • 1.3.1.1 Invasive Methods
  • 1.3.1.2 Non-Invasive Methods
  • 1.3.2 Feature Extraction
  • 1.3.3 Classification
  • 1.3.3.1 Types of Classifiers
  • 1.4 Applications of BCI
  • 1.5 Challenges Faced During Implementation of BCI
  • References
  • Chapter 2 Introduction: Brain-Computer Interface and Deep Learning
  • 2.1 Introduction
  • 2.1.1 Current Stance of P300 BCI
  • 2.2 Brain-Computer Interface Cycle
  • 2.3 Classification of Techniques Used for Brain-Computer Interface
  • 2.3.1 Application in Mental Health
  • 2.3.2 Application in Motor-Imagery
  • 2.3.3 Application in Sleep Analysis
  • 2.3.4 Application in Emotion Analysis
  • 2.3.5 Hybrid Methodologies
  • 2.3.6 Recent Notable Advancements
  • 2.4 Case Study: A Hybrid EEG-fNIRS BCI
  • 2.5 Conclusion, Open Issues and Future Endeavors
  • References
  • Chapter 3 Statistical Learning for Brain-Computer Interface
  • 3.1 Introduction
  • 3.1.1 Various Techniques to BCI
  • 3.1.1.1 Non-Invasive
  • 3.1.1.2 Semi-Invasive
  • 3.1.1.3 Invasive
  • 3.2 Machine Learning Techniques to BCI
  • 3.2.1 Support Vector Machine (SVM)
  • 3.2.2 Neural Networks
  • 3.3 Deep Learning Techniques Used in BCI
  • 3.3.1 Convolutional Neural Network Model (CNN)
  • 3.3.2 Generative DL Models
  • 3.4 Future Direction
  • 3.5 Conclusion
  • References
  • Chapter 4 The Impact of Brain-Computer Interface on Lifestyle of Elderly People
  • 4.1 Introduction
  • 4.2 Diagnosing Diseases
  • 4.3 Movement Control
  • 4.4 IoT
  • 4.5 Cognitive Science
  • 4.6 Olfactory System
  • 4.7 Brain-to-Brain (B2B) Communication Systems
  • 4.8 Hearing
  • 4.9 Diabetes
  • 4.10 Urinary Incontinence
  • 4.11 Conclusion
  • References.
  • Chapter 5 A Review of Innovation to Human Augmentation in Brain-Machine Interface - Potential, Limitation, and Incorporation of AI
  • 5.1 Introduction
  • 5.2 Technologies in Neuroscience for Recording and Influencing Brain Activity
  • 5.2.1 Brain Activity Recording Technologies
  • 5.2.1.1 A Non-Invasive Recording Methodology
  • 5.2.1.2 An Invasive Recording Methodology
  • 5.3 Neuroscience Technology Applications for Human Augmentation
  • 5.3.1 Need for BMI
  • 5.3.1.1 Need of BMI Individuals for Re-Establishing the Control and Communication of Motor
  • 5.3.1.2 Brain-Computer Interface Noninvasive Research at Wadsworth Center
  • 5.3.1.3 An Interface of Berlin Brain-Computer: Machine Learning-Dependent of User-Specific Brain States Detection
  • 5.4 History of BMI
  • 5.5 BMI Interpretation of Machine Learning Integration
  • 5.6 Beyond Current Existing Methodologies: Nanomachine Learning BMI Supported
  • 5.7 Challenges and Open Issues
  • 5.8 Conclusion
  • References
  • Chapter 6 Resting-State fMRI: Large Data Analysis in Neuroimaging
  • 6.1 Introduction
  • 6.1.1 Principles of Functional Magnetic Resonance Imaging (fMRI)
  • 6.1.2 Resting State fMRI (rsfMRI) for Neuroimaging
  • 6.1.3 The Measurement of Fully Connected and Construction of Default Mode Network (DMN)
  • 6.2 Brain Connectivity
  • 6.2.1 Anatomical Connectivity
  • 6.2.2 Functional Connectivity
  • 6.3 Better Image Availability
  • 6.3.1 Large Data Analysis in Neuroimaging
  • 6.3.2 Big Data rfMRI Challenges
  • 6.3.3 Large rfMRI Data Software Packages
  • 6.4 Informatics Infrastructure and Analytical Analysis
  • 6.5 Need of Resting-State MRI
  • 6.5.1 Cerebral Energetics
  • 6.5.2 Signal to Noise Ratio (SNR)
  • 6.5.3 Multi-Purpose Data Sets
  • 6.5.4 Expanded Patient Populations
  • 6.5.5 Reliability
  • 6.6 Technical Development
  • 6.7 rsfMRI Clinical Applications.
  • 6.7.1 Mild Cognitive Impairment (MCI) and Alzheimer's Disease (AD)
  • 6.7.2 Fronto-Temporal Dementia (FTD)
  • 6.7.3 Multiple Sclerosis (MS)
  • 6.7.4 Amyotrophic Lateral Sclerosis (ALS) and Depression
  • 6.7.5 Bipolar
  • 6.7.6 Schizophrenia
  • 6.7.7 Attention Deficit Hyperactivity Disorder (ADHD)
  • 6.7.8 Multiple System Atrophy (MSA)
  • 6.7.9 Epilepsy/Seizures
  • 6.7.10 Pediatric Applications
  • 6.8 Resting-State Functional Imaging of Neonatal Brain Image
  • 6.9 Different Groups in Brain Disease
  • 6.10 Learning Algorithms for Analyzing rsfMRI
  • 6.11 Conclusion and Future Directions
  • References
  • Chapter 7 Early Prediction of Epileptic Seizure Using Deep Learning Algorithm
  • 7.1 Introduction
  • 7.2 Methodology
  • 7.3 Experimental Results
  • 7.4 Taking Care of Children with Seizure Disorders
  • 7.5 Ketogenic Diet
  • 7.6 Vagus Nerve Stimulation (VNS)
  • 7.7 Brain Surgeries
  • 7.8 Conclusion
  • References
  • Chapter 8 Brain-Computer Interface-Based Real-Time Movement of Upper Limb Prostheses Topic: Improving the Quality of the Elderly with Brain-Computer Interface
  • 8.1 Introduction
  • 8.1.1 Motor Imagery Signal Decoding
  • 8.2 Literature Survey
  • 8.3 Methodology of Proposed Work
  • 8.3.1 Proposed Control Scheme
  • 8.3.2 One Versus All Adaptive Neural Type-2 Fuzzy Inference System (OVAANT2FIS)
  • 8.3.3 Position Control of Robot Arm Using Hybrid BCI for Rehabilitation Purpose
  • 8.3.4 Jaco Robot Arm
  • 8.3.5 Scheme 1: Random Order Positional Control
  • 8.4 Experiments and Data Processing
  • 8.4.1 Feature Extraction
  • 8.4.2 Performance Analysis of the Detectors
  • 8.4.3 Performance of the Real Time Robot Arm Controllers
  • 8.5 Discussion
  • 8.6 Conclusion and Future Research Directions
  • References
  • Chapter 9 Brain-Computer Interface-Assisted Automated Wheelchair Control Management-Cerebro: A BCI Application
  • 9.1 Introduction.
  • 9.1.1 What is a BCI?
  • 9.2 How Do BCI's Work?
  • 9.2.1 Measuring Brain Activity
  • 9.2.1.1 Without Surgery
  • 9.2.1.2 With Surgery
  • 9.2.2 Mental Strategies
  • 9.2.2.1 SSVEP
  • 9.2.2.2 Neural Motor Imagery
  • 9.3 Data Collection
  • 9.3.1 Overview of the Data
  • 9.3.2 EEG Headset
  • 9.3.3 EEG Signal Collection
  • 9.4 Data Pre-Processing
  • 9.4.1 Artifact Removal
  • 9.4.2 Signal Processing and Dimensionality Reduction
  • 9.4.3 Feature Extraction
  • 9.5 Classification
  • 9.5.1 Deep Learning (DL) Model Pipeline
  • 9.5.2 Architecture of the DL Model
  • 9.5.3 Output Metrics of the Classifier
  • 9.5.4 Deployment of DL Model
  • 9.5.5 Control System
  • 9.5.6 Control Flow Overview
  • 9.6 Control Modes
  • 9.6.1 Speech Mode
  • 9.6.2 Blink Stimulus Mapping
  • 9.6.3 Text Interface
  • 9.6.4 Motion Mode
  • 9.6.5 Motor Arrangement
  • 9.6.6 Imagined Motion Mapping
  • 9.7 Compilation of All Systems
  • 9.8 Conclusion
  • References
  • Chapter 10 Identification of Imagined Bengali Vowels from EEG Signals Using Activity Map and Convolutional Neural Network
  • 10.1 Introduction
  • 10.1.1 Electroencephalography (EEG)
  • 10.1.2 Imagined Speech or Silent Speech
  • 10.2 Literature Survey
  • 10.3 Theoretical Background
  • 10.3.1 Convolutional Neural Network
  • 10.3.2 Activity Map
  • 10.4 Methodology
  • 10.4.1 Data Collection
  • 10.4.2 Pre-Processing
  • 10.4.3 Feature Extraction
  • 10.4.4 Classification
  • 10.5 Results
  • 10.6 Conclusion
  • Acknowledgment
  • References
  • Chapter 11 Optimized Feature Selection Techniques for Classifying Electrocorticography Signals
  • 11.1 Introduction
  • 11.1.1 Brain-Computer Interface
  • 11.2 Literature Study
  • 11.3 Proposed Methodology
  • 11.3.1 Dataset
  • 11.3.2 Feature Extraction Using Auto-Regressive (AR) Model and Wavelet Transform
  • 11.3.2.1 Auto-Regressive Features
  • 11.3.2.2 Wavelet Features
  • 11.3.2.3 Feature Selection Methods.
  • 11.3.2.4 Information Gain (IG)
  • 11.3.2.5 Clonal Selection
  • 11.3.2.6 An Overview of the Steps of the CLONALG
  • 11.3.3 Hybrid CLONALG
  • 11.4 Experimental Results
  • 11.4.1 Results of Feature Selection Using IG with Various Classifiers
  • 11.4.2 Results of Optimizing Support Vector Machine Using CLONALG Selection
  • 11.5 Conclusion
  • References
  • Chapter 12 BCI - Challenges, Applications, and Advancements
  • 12.1 Introduction
  • 12.1.1 BCI Structure
  • 12.2 Related Works
  • 12.3 Applications
  • 12.4 Challenges and Advancements
  • 12.5 Conclusion
  • References
  • Index
  • EULA.